143 research outputs found

    Forage supply of West African rangelands : Towards a better understanding of ecosystem services by application of hyperspectral remote sensing

    Get PDF
    Grazing is the predominant type of land use in savanna regions all over the world. Although large savanna areas in Africa are still grazed by wild herbivores, the West African Sudanian savanna region mainly comprises rangeland ecosystems, providing the important ecosystem service of forage supply for domestic livestock. However, these dryland rangelands are threatened by global change, including a predicted in-crease in climatic aridity and variability as well as land degradation caused by overgrazing. In this context, the international research project WASCAL (West African Science Service Centre on Climate Change and Adapted Land Use) was initiated to investigate the effects of climatic change in this region and to develop effective adaptation and mitigation measures. This cumulative dissertation aims at providing a methodology for a regular knowledge-driven monitoring of forage resources in West Africa. Due to the vast and remote nature of Sudanian savannas, remote sensing technologies are required to achieve this goal. Hence, as a first step, it was necessary to test whether hyperspectral near-surface remote sensing offers the means to model and estimate the two most important aspects of forage supply, i.e. forage quantity (green biomass) and quality (metabolisable energy) (Chapter 2.1). Evidence was provided that partial least squares regression was able to generate robust and transferable forage models. In a second step, direct and indirect drivers of forage supply on the plot and site level were identified by using path modelling within the well-defined concept of social-ecological systems (Chapter 2.2). Results indicate that the provisioning ecosystem service of forage supply is mainly driven by land use, while climatic aridity exerts foremost indirect control by determining the way people use their environment. Building on these findings, upscaling of models was tested to generate maps of forage quality and quantity from satellite images (Chapter 2.3). Here, two different available data sources, i.e. multi- and hyperspectral satellites, were compared to serve the overall objective to install a regular forage monitoring system. In conclusion, preliminary forage maps could be created from both systems. An independent validation would be a research desiderate for future studies. Moreover, both systems feature certain shortcomings that might only be overcome by future satellite missions

    Estimating the crop leaf area index using hyperspectral remote sensing

    Get PDF
    AbstractThe leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications. Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies. During the last two decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique technical procedures compared with conventional multispectral data, such as denoising and dimension reduction. Thus, we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques. First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation. Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions. We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the characteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical models, and inversion strategies for physical models). Thus, numerous models and inversion strategies are organized in a clear conceptual framework. Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such as the “curse of dimensionality” and the ill-posed problem. Finally, we discuss the prospects for future research based on the previous studies described in this review

    A Comparative Analysis of Phytovolume Estimation Methods Based on UAV-Photogrammetry and Multispectral Imagery in a Mediterranean Forest

    Get PDF
    Management and control operations are crucial for preventing forest fires, especially in Mediterranean forest areas with dry climatic periods. One of them is prescribed fires, in which the biomass fuel present in the controlled plot area must be accurately estimated. The most used methods for estimating biomass are time-consuming and demand too much manpower. Unmanned aerial vehicles (UAVs) carrying multispectral sensors can be used to carry out accurate indirect measurements of terrain and vegetation morphology and their radiometric characteristics. Based on the UAV-photogrammetric project products, four estimators of phytovolume were compared in a Mediterranean forest area, all obtained using the difference between a digital surface model (DSM) and a digital terrain model (DTM). The DSM was derived from a UAV-photogrammetric project based on the structure from a motion algorithm. Four different methods for obtaining a DTM were used based on an unclassified dense point cloud produced through a UAV-photogrammetric project (FFU), an unsupervised classified dense point cloud (FFC), a multispectral vegetation index (FMI), and a cloth simulation filter (FCS). Qualitative and quantitative comparisons determined the ability of the phytovolume estimators for vegetation detection and occupied volume. The results show that there are no significant differences in surface vegetation detection between all the pairwise possible comparisons of the four estimators at a 95% confidence level, but FMI presented the best kappa value (0.678) in an error matrix analysis with reference data obtained from photointerpretation and supervised classification. Concerning the accuracy of phytovolume estimation, only FFU and FFC presented differences higher than two standard deviations in a pairwise comparison, and FMI presented the best RMSE (12.3 m) when the estimators were compared to 768 observed data points grouped in four 500 m2 sample plots. The FMI was the best phytovolume estimator of the four compared for low vegetation height in a Mediterranean forest. The use of FMI based on UAV data provides accurate phytovolume estimations that can be applied on several environment management activities, including wildfire prevention. Multitemporal phytovolume estimations based on FMI could help to model the forest resources evolution in a very realistic way
    corecore