739 research outputs found

    Using Deep Networks for Drone Detection

    Full text link
    Drone detection is the problem of finding the smallest rectangle that encloses the drone(s) in a video sequence. In this study, we propose a solution using an end-to-end object detection model based on convolutional neural networks. To solve the scarce data problem for training the network, we propose an algorithm for creating an extensive artificial dataset by combining background-subtracted real images. With this approach, we can achieve precision and recall values both of which are high at the same time.Comment: To appear in International Workshop on Small-Drone Surveillance, Detection and Counteraction Techniques organised within AVSS 201

    Survey on video anomaly detection in dynamic scenes with moving cameras

    Full text link
    The increasing popularity of compact and inexpensive cameras, e.g.~dash cameras, body cameras, and cameras equipped on robots, has sparked a growing interest in detecting anomalies within dynamic scenes recorded by moving cameras. However, existing reviews primarily concentrate on Video Anomaly Detection (VAD) methods assuming static cameras. The VAD literature with moving cameras remains fragmented, lacking comprehensive reviews to date. To address this gap, we endeavor to present the first comprehensive survey on Moving Camera Video Anomaly Detection (MC-VAD). We delve into the research papers related to MC-VAD, critically assessing their limitations and highlighting associated challenges. Our exploration encompasses three application domains: security, urban transportation, and marine environments, which in turn cover six specific tasks. We compile an extensive list of 25 publicly-available datasets spanning four distinct environments: underwater, water surface, ground, and aerial. We summarize the types of anomalies these datasets correspond to or contain, and present five main categories of approaches for detecting such anomalies. Lastly, we identify future research directions and discuss novel contributions that could advance the field of MC-VAD. With this survey, we aim to offer a valuable reference for researchers and practitioners striving to develop and advance state-of-the-art MC-VAD methods.Comment: Under revie

    Deep Learning Computer Vision Algorithms for Real-time UAVs On-board Camera Image Processing

    Full text link
    This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs. Four use cases are considered: target detection, classification and localization, road segmentation for autonomous navigation in GNSS-denied zones, human body segmentation, and human action recognition. All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks. Acquisition campaigns have been carried out to collect custom datasets reflecting typical operational scenarios, where the peculiar point of view of a multi-rotor UAV is replicated. Algorithms architectures and trained models performances are reported, showing high levels of both accuracy and inference speed. Output examples and on-field videos are presented, demonstrating models operation when deployed on a GPU-powered commercial embedded device (NVIDIA Jetson Xavier) mounted on board of a custom quad-rotor, paving the way to enabling high level autonomy.Comment: 10 pages, 12 figures, NATO AVT-353 Research Workshop "Artificial Intelligence in Cockpits for UAVs", Turin, Italy, 26 April 202

    Spatio-temporal road detection from aerial imagery using CNNs

    Get PDF
    The main goal of this paper is to detect roads from aerial imagery recorded by drones. To achieve this, we propose a modification of SegNet, a deep fully convolutional neural network for image segmentation. In order to train this neural network, we have put together a database containing videos of roads from the point of view of a small commercial drone. Additionally, we have developed an image annotation tool based on the watershed technique, in order to perform a semi-automatic labeling of the videos in this database. The experimental results using our modified version of SegNet show a big improvement on the performance of the neural network when using aerial imagery, obtaining over 90% accuracy.Postprint (published version
    • …
    corecore