403 research outputs found

    3D CNNs on distance matrices for human action recognition

    Get PDF
    In this paper we are interested in recognizing human actions from sequences of 3D skeleton data. For this purpose we combine a 3D Convolutional Neural Network with body representations based on Euclidean Distance Matrices (EDMs), which have been recently shown to be very effective to capture the geometric structure of the human pose. One inherent limitation of the EDMs, however, is that they are defined up to a permutation of the skeleton joints, i.e., randomly shuffling the ordering of the joints yields many different representations. In oder to address this issue we introduce a novel architecture that simultaneously, and in an end-to-end manner, learns an optimal transformation of the joints, while optimizing the rest of parameters of the convolutional network. The proposed approach achieves state-of-the-art results on 3 benchmarks, including the recent NTU RGB-D dataset, for which we improve on previous LSTM-based methods by more than 10 percentage points, also surpassing other CNN-based methods while using almost 1000 times fewer parameters.Peer ReviewedPostprint (author's final draft

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Architectures d'apprentissage profond pour la reconnaissance d'actions humaines dans des séquences vidéo RGB-D monoculaires. Application à la surveillance dans les transports publics

    Get PDF
    Cette thèse porte sur la reconnaissance d'actions humaines dans des séquences vidéo RGB-D monoculaires. La question principale est, à partir d'une vidéo ou d'une séquence d'images donnée, de savoir comment reconnaître des actions particulières qui se produisent. Cette tâche est importante et est un défi majeur à cause d'un certain nombre de verrous scientifiques induits par la variabilité des conditions d'acquisition, comme l'éclairage, la position, l'orientation et le champ de vue de la caméra, ainsi que par la variabilité de la réalisation des actions, notamment de leur vitesse d'exécution. Pour surmonter certaines de ces difficultés, dans un premier temps, nous examinons et évaluons les techniques les plus récentes pour la reconnaissance d'actions dans des vidéos. Nous proposons ensuite une nouvelle approche basée sur des réseaux de neurones profonds pour la reconnaissance d'actions humaines à partir de séquences de squelettes 3D. Deux questions clés ont été traitées. Tout d'abord, comment représenter la dynamique spatio-temporelle d'une séquence de squelettes pour exploiter efficacement la capacité d'apprentissage des représentations de haut niveau des réseaux de neurones convolutifs (CNNs ou ConvNets). Ensuite, comment concevoir une architecture de CNN capable d'apprendre des caractéristiques spatio-temporelles discriminantes à partir de la représentation proposée dans un objectif de classification. Pour cela, nous introduisons deux nouvelles représentations du mouvement 3D basées sur des squelettes, appelées SPMF (Skeleton Posture-Motion Feature) et Enhanced-SPMF, qui encodent les postures et les mouvements humains extraits des séquences de squelettes sous la forme d'images couleur RGB. Pour les tâches d'apprentissage et de classification, nous proposons différentes architectures de CNNs, qui sont basées sur les modèles Residual Network (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network (DenseNet) et Efficient Neural Architecture Search (ENAS), pour extraire des caractéristiques robustes de la représentation sous forme d'image que nous proposons et pour les classer. Les résultats expérimentaux sur des bases de données publiques (MSR Action3D, Kinect Activity Recognition Dataset, SBU Kinect Interaction, et NTU-RGB+D) montrent que notre approche surpasse les méthodes de l'état de l'art. Nous proposons également une nouvelle technique pour l'estimation de postures humaines à partir d'une vidéo RGB. Pour cela, le modèle d'apprentissage profond appelé OpenPose est utilisé pour détecter les personnes et extraire leur posture en 2D. Un réseau de neurones profond est ensuite proposé pour apprendre la transformation permettant de reconstruire ces postures en trois dimensions. Les résultats expérimentaux sur la base de données Human3.6M montrent l'efficacité de la méthode proposée. Ces résultats ouvrent des perspectives pour une approche de la reconnaissance d'actions humaines à partir des séquences de squelettes 3D sans utiliser des capteurs de profondeur comme la Kinect. Nous avons également constitué la base CEMEST, une nouvelle base de données RGB-D illustrant des comportements de passagers dans les transports publics. Elle contient 203 vidéos de surveillance collectées dans une station du métro incluant des événements "normaux" et "anormaux". Nous avons obtenu des résultats prometteurs sur cette base en utilisant des techniques d'augmentation de données et de transfert d'apprentissage. Notre approche permet de concevoir des applications basées sur des techniques de l'apprentissage profond pour renforcer la qualité des services de transport en commun.This thesis is dealing with automatic recognition of human actions from monocular RGB-D video sequences. Our main goal is to recognize which human actions occur in unknown videos. This problem is a challenging task due to a number of obstacles caused by the variability of the acquisition conditions, including the lighting, the position, the orientation and the field of view of the camera, as well as the variability of actions which can be performed differently, notably in terms of speed. To tackle these problems, we first review and evaluate the most prominent state-of-the-art techniques to identify the current state of human action recognition in videos. We then propose a new approach for skeleton-based action recognition using Deep Neural Networks (DNNs). Two key questions have been addressed. First, how to efficiently represent the spatio-temporal patterns of skeletal data for fully exploiting the capacity in learning high-level representations of Deep Convolutional Neural Networks (D-CNNs). Second, how to design a powerful D-CNN architecture that is able to learn discriminative features from the proposed representation for classification task. As a result, we introduce two new 3D motion representations called SPMF (Skeleton Posture-Motion Feature) and Enhanced-SPMF that encode skeleton poses and their motions into color images. For learning and classification tasks, we design and train different D-CNN architectures based on the Residual Network (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network (DenseNet) and Efficient Neural Architecture Search (ENAS) to extract robust features from color-coded images and classify them. Experimental results on various public and challenging human action recognition datasets (MSR Action3D, Kinect Activity Recognition Dataset, SBU Kinect Interaction, and NTU-RGB+D) show that the proposed approach outperforms current state-of-the-art. We also conducted research on the problem of 3D human pose estimation from monocular RGB video sequences and exploited the estimated 3D poses for recognition task. Specifically, a deep learning-based model called OpenPose is deployed to detect 2D human poses. A DNN is then proposed and trained for learning a 2D-to-3D mapping in order to map the detected 2D keypoints into 3D poses. Our experiments on the Human3.6M dataset verified the effectiveness of the proposed method. These obtained results allow opening a new research direction for human action recognition from 3D skeletal data, when the depth cameras are failing. In addition, we collect and introduce in this thesis, CEMEST database, a new RGB-D dataset depicting passengers' behaviors in public transport. It consists of 203 untrimmed real-world surveillance videos of realistic "normal" and "abnormal" events. We achieve promising results on CEMEST with the support of data augmentation and transfer learning techniques. This enables the construction of real-world applications based on deep learning for enhancing public transportation management services

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Skeleton-Based Human Action Recognition with Global Context-Aware Attention LSTM Networks

    Full text link
    Human action recognition in 3D skeleton sequences has attracted a lot of research attention. Recently, Long Short-Term Memory (LSTM) networks have shown promising performance in this task due to their strengths in modeling the dependencies and dynamics in sequential data. As not all skeletal joints are informative for action recognition, and the irrelevant joints often bring noise which can degrade the performance, we need to pay more attention to the informative ones. However, the original LSTM network does not have explicit attention ability. In this paper, we propose a new class of LSTM network, Global Context-Aware Attention LSTM (GCA-LSTM), for skeleton based action recognition. This network is capable of selectively focusing on the informative joints in each frame of each skeleton sequence by using a global context memory cell. To further improve the attention capability of our network, we also introduce a recurrent attention mechanism, with which the attention performance of the network can be enhanced progressively. Moreover, we propose a stepwise training scheme in order to train our network effectively. Our approach achieves state-of-the-art performance on five challenging benchmark datasets for skeleton based action recognition

    Multi-View Region Adaptive Multi-temporal DMM and RGB Action Recognition

    Get PDF
    Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel Multiple View Region Adaptive Multi-resolution in time Depth Motion Map (MV-RAMDMM) formulation combined with appearance information. Multiple stream 3D Convolutional Neural Networks (CNNs) are trained on the different views and time resolutions of the region adaptive Depth Motion Maps. Multiple views are synthesised to enhance the view invariance. The region adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information (RGB) are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multiple class Support Vector Machines (SVM)s. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public domain datasets including: MSR 3D Action,Northwestern UCLA multi-view actions and MSR 3D daily activity are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.Comment: 14 pages, 6 figures, 13 tables. Submitte

    Learning to Recognize 3D Human Action from A New Skeleton-based Representation Using Deep Convolutional Neural Networks

    Get PDF
    Recognizing human actions in untrimmed videos is an important challenging task. An effective 3D motion representation and a powerful learning model are two key factors influencing recognition performance. In this paper we introduce a new skeletonbased representation for 3D action recognition in videos. The key idea of the proposed representation is to transform 3D joint coordinates of the human body carried in skeleton sequences into RGB images via a color encoding process. By normalizing the 3D joint coordinates and dividing each skeleton frame into five parts, where the joints are concatenated according to the order of their physical connections, the color-coded representation is able to represent spatio-temporal evolutions of complex 3D motions, independently of the length of each sequence. We then design and train different Deep Convolutional Neural Networks (D-CNNs) based on the Residual Network architecture (ResNet) on the obtained image-based representations to learn 3D motion features and classify them into classes. Our method is evaluated on two widely used action recognition benchmarks: MSR Action3D and NTU-RGB+D, a very large-scale dataset for 3D human action recognition. The experimental results demonstrate that the proposed method outperforms previous state-of-the-art approaches whilst requiring less computation for training and prediction.This research was carried out at the Cerema Research Center (CEREMA) and Toulouse Institute of Computer Science Research (IRIT), Toulouse, France. Sergio A. Velastin is grateful for funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for Research, Technological Development and demonstration under grant agreement N. 600371, el Ministerio de Economia, Industria y Competitividad (COFUND2013-51509) el Ministerio de Educación, cultura y Deporte (CEI-15-17) and Banco Santander
    corecore