71,312 research outputs found

    Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic Prediction

    Full text link
    Accurate traffic prediction is a challenging task in intelligent transportation systems because of the complex spatio-temporal dependencies in transportation networks. Many existing works utilize sophisticated temporal modeling approaches to incorporate with graph convolution networks (GCNs) for capturing short-term and long-term spatio-temporal dependencies. However, these separated modules with complicated designs could restrict effectiveness and efficiency of spatio-temporal representation learning. Furthermore, most previous works adopt the fixed graph construction methods to characterize the global spatio-temporal relations, which limits the learning capability of the model for different time periods and even different data scenarios. To overcome these limitations, we propose an automated dilated spatio-temporal synchronous graph network, named Auto-DSTSGN for traffic prediction. Specifically, we design an automated dilated spatio-temporal synchronous graph (Auto-DSTSG) module to capture the short-term and long-term spatio-temporal correlations by stacking deeper layers with dilation factors in an increasing order. Further, we propose a graph structure search approach to automatically construct the spatio-temporal synchronous graph that can adapt to different data scenarios. Extensive experiments on four real-world datasets demonstrate that our model can achieve about 10% improvements compared with the state-of-art methods. Source codes are available at https://github.com/jinguangyin/Auto-DSTSGN

    Multi-Spatio-temporal Fusion Graph Recurrent Network for Traffic forecasting

    Full text link
    Traffic forecasting is essential for the traffic construction of smart cities in the new era. However, traffic data's complex spatial and temporal dependencies make traffic forecasting extremely challenging. Most existing traffic forecasting methods rely on the predefined adjacency matrix to model the Spatio-temporal dependencies. Nevertheless, the road traffic state is highly real-time, so the adjacency matrix should change dynamically with time. This article presents a new Multi-Spatio-temporal Fusion Graph Recurrent Network (MSTFGRN) to address the issues above. The network proposes a data-driven weighted adjacency matrix generation method to compensate for real-time spatial dependencies not reflected by the predefined adjacency matrix. It also efficiently learns hidden Spatio-temporal dependencies by performing a new two-way Spatio-temporal fusion operation on parallel Spatio-temporal relations at different moments. Finally, global Spatio-temporal dependencies are captured simultaneously by integrating a global attention mechanism into the Spatio-temporal fusion module. Extensive trials on four large-scale, real-world traffic datasets demonstrate that our method achieves state-of-the-art performance compared to alternative baselines

    The right place at the right time: assisting spatio-temporal planning in construction

    Get PDF
    21st - 24th October 2003 This paper describes research carried out for requirements capture in the development of a computer-based decision support tool (VIRCON) for space-time scheduling and visualisation of construction tasks. The focus was on pre-tender work and involved interviews with construction planners. Both space-time scheduling and visualisation of tasks are largely informal/intuitive processes for planners. They form an important part of the planner\'s risk identification function. Planners tend to opt for a robust spatio-temporal schedule rather than an optimal one. They require decision support tools that are quick and easy to use rather than highly sophisticated. The research highlights the extent to which construction planning is a communicative and co-operative activity in addition to a complex problem-solving one. Questions arise about the cost to the client of non-involvement by the construction planner at the design stage, the costs of short pre-tender periods, inadequate design data and sub-optimal construction periods specified in tender documents

    Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic Forecasting

    Full text link
    With the acceleration of urbanization, traffic forecasting has become an essential role in smart city construction. In the context of spatio-temporal prediction, the key lies in how to model the dependencies of sensors. However, existing works basically only consider the micro relationships between sensors, where the sensors are treated equally, and their macroscopic dependencies are neglected. In this paper, we argue to rethink the sensor's dependency modeling from two hierarchies: regional and global perspectives. Particularly, we merge original sensors with high intra-region correlation as a region node to preserve the inter-region dependency. Then, we generate representative and common spatio-temporal patterns as global nodes to reflect a global dependency between sensors and provide auxiliary information for spatio-temporal dependency learning. In pursuit of the generality and reality of node representations, we incorporate a Meta GCN to calibrate the regional and global nodes in the physical data space. Furthermore, we devise the cross-hierarchy graph convolution to propagate information from different hierarchies. In a nutshell, we propose a Hierarchical Information Enhanced Spatio-Temporal prediction method, HIEST, to create and utilize the regional dependency and common spatio-temporal patterns. Extensive experiments have verified the leading performance of our HIEST against state-of-the-art baselines. We publicize the code to ease reproducibility.Comment: 9 pages, accepted by CIKM'2

    Generalised additive multiscale wavelet models constructed using particle swarm optimisation and mutual information for spatio-temporal evolutionary system representation

    Get PDF
    A new class of generalised additive multiscale wavelet models (GAMWMs) is introduced for high dimensional spatio-temporal evolutionary (STE) system identification. A novel two-stage hybrid learning scheme is developed for constructing such an additive wavelet model. In the first stage, a new orthogonal projection pursuit (OPP) method, implemented using a particle swarm optimisation(PSO) algorithm, is proposed for successively augmenting an initial coarse wavelet model, where relevant parameters of the associated wavelets are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be a redundant model. In the second stage, a forward orthogonal regression (FOR) algorithm, implemented using a mutual information method, is then applied to refine and improve the initially constructed wavelet model. The proposed two-stage hybrid method can generally produce a parsimonious wavelet model, where a ranked list of wavelet functions, according to the capability of each wavelet to represent the total variance in the desired system output signal is produced. The proposed new modelling framework is applied to real observed images, relative to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, and the associated identification results show that the new modelling framework is applicable and effective for handling high dimensional identification problems of spatio-temporal evolution sytems

    MPSTAN: Metapopulation-based Spatio-Temporal Attention Network for Epidemic Forecasting

    Full text link
    Accurate epidemic forecasting plays a vital role for governments in developing effective prevention measures for suppressing epidemics. Most of the present spatio-temporal models cannot provide a general framework for stable, and accurate forecasting of epidemics with diverse evolution trends. Incorporating epidemiological domain knowledge ranging from single-patch to multi-patch into neural networks is expected to improve forecasting accuracy. However, relying solely on single-patch knowledge neglects inter-patch interactions, while constructing multi-patch knowledge is challenging without population mobility data. To address the aforementioned problems, we propose a novel hybrid model called Metapopulation-based Spatio-Temporal Attention Network (MPSTAN). This model aims to improve the accuracy of epidemic forecasting by incorporating multi-patch epidemiological knowledge into a spatio-temporal model and adaptively defining inter-patch interactions. Moreover, we incorporate inter-patch epidemiological knowledge into both the model construction and loss function to help the model learn epidemic transmission dynamics. Extensive experiments conducted on two representative datasets with different epidemiological evolution trends demonstrate that our proposed model outperforms the baselines and provides more accurate and stable short- and long-term forecasting. We confirm the effectiveness of domain knowledge in the learning model and investigate the impact of different ways of integrating domain knowledge on forecasting. We observe that using domain knowledge in both model construction and loss functions leads to more efficient forecasting, and selecting appropriate domain knowledge can improve accuracy further
    • …
    corecore