1,450 research outputs found

    Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area

    Full text link
    Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of general clustering of the cases.Comment: 21 pages including 4 figures and 5 tables; methods are implemented in the R package surveillance (https://CRAN.R-project.org/package=surveillance

    A space-time conditional intensity model for infectious disease occurence

    Get PDF
    A novel point process model continuous in space-time is proposed for infectious disease data. Modelling is based on the conditional intensity function (CIF) and extends an additive-multiplicative CIF model previously proposed for discrete space epidemic modelling. Estimation is performed by means of full maximum likelihood and a simulation algorithm is presented. The particular application of interest is the stochastic modelling of the transmission dynamics of the two most common meningococcal antigenic sequence types observed in Germany 2002–2008. Altogether, the proposed methodology represents a comprehensive and universal regression framework for the modelling, simulation and inference of self-exciting spatio-temporal point processes based on the CIF. Application is promoted by an implementation in the R package RLadyBug

    Continuous Time Individual-Level Models of Infectious Disease: a Package EpiILMCT

    Get PDF
    This paper describes the R package EpiILMCT, which allows users to study the spread of infectious disease using continuous time individual level models (ILMs). The package provides tools for simulation from continuous time ILMs that are based on either spatial demographic, contact network, or a combination of both of them, and for the graphical summarization of epidemics. Model fitting is carried out within a Bayesian Markov Chain Monte Carlo (MCMC) framework. The continuous time ILMs can be implemented within either susceptible-infected-removed (SIR) or susceptible-infected-notified-removed (SINR) compartmental frameworks. As infectious disease data is often partially observed, data uncertainties in the form of missing infection times - and in some situations missing removal times - are accounted for using data augmentation techniques. The package is illustrated using both simulated and an experimental data set on the spread of the tomato spotted wilt virus (TSWV) disease

    A statistical approach for studying urban human dynamics

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsThis doctoral dissertation proposed several statistical approaches to analyse urban dynamics with aiming to provide tools for decision making processes and urban studies. It assumed that human activity and human mobility compose urban dynamics. Initially, it studied geolocated social media data and considered them as a proxy for where and when people carry out what it is defined as the human activity. It employed techniques associated with generalised linear models, functional data analysis, hierarchical clustering, and epidemic data, to explain the spatio-temporal distribution of the places where people interact with their social networks. Afterwards, to understand the mobility in urban environments, data coming from an underground railway system were used. The information was considered repeated daily measurements to capture the regularity of human behaviour. By implementing methods from functional principal components data analysis and hierarchical clustering, it was possible to describe the system and identify human mobility patterns
    corecore