794 research outputs found

    Game engines and MAS: tuplespace-based interaction in Unity3D

    Get PDF
    I Game Engines stanno acquisendo sempre più importanza sia in ambito industriale, dove permettono lo sviluppo di applicazioni moderne e videogiochi, sia in ambito di ricerca, in particolare nel contesto dei sistemi multi-agente (MAS). La loro capacità espressiva, unita al supporto di tecnologie e funzionalità innovative, permette la creazione di sistemi moderni e complessi in maniera più efficiente: il loro continuo avanzamento tecnologico li ha portati ad essere una realtà su cui fare affidamento nella produzione di vari applicativi diversi, come applicazioni di realtà aumentata/virtuale/mista, simulazioni immersive, costruzione di mondi virtuali e 3D, ecc. Ciononostante, soffrono la mancanza di proprie astrazioni e meccanismi che possano essere affidabili e utilizzati per aggredire la complessità durante il design di sistemi complessi. Il tentativo di sfruttare le caratteristiche della teoria dei MAS all'interno degli ambienti di sviluppo dei Game Engines procede secondo questa direzione: integrando le astrazioni costituenti i MAS all'interno dei Game Engines, con particolare riferimento ai modelli di coordinazione tra agenti, può portare a nuove soluzioni, riuscendo a risolvere problemi tecnologici grazie all'aiuto degli engine grafici. Questa tesi utilizza il Game Engine Unity3D proponendo due librerie C#, le quali sfruttano una precedente integrazione dello stesso framework con il Prolog per l'abilitazione di un modello di interazione e coordinazione basato su spazi di tuple, utilizzabile tramite l'implementazione di primitive LINDA. Le librerie offrono interfacce di programmazione (API) sfruttabili dai programmatori C# Unity3D per integrare nelle loro creazioni il supporto a tale modello, con una nuova modalità per la gestione della coordinazione tra oggetti in Unity3D e fornisce importanti proprietà, essendo fondamentale nel contesto dei MAS dal punto di vista dell'ingegnerizzazione di sistemi complessi e della gestione delle interazioni tra agenti

    Positive and negative regulation of angiogenesis by soluble vascular endothelial growth factor receptor-1

    Get PDF
    Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, known as soluble fms-like tyrosine kinase (sFlt)1-14. By binding members of the vascular endothelial growth factor (VEGF) family, the soluble forms reduce the amounts of VEGFs available for the interaction with their transmembrane receptors, thereby negatively regulating VEGFR-mediated signaling. In agreement with this activity, high levels of circulating sVEGFR-1 or sFlt1-14 are associated with different pathological conditions involving vascular dysfunction. Moreover, sVEGFR-1 and sFlt1-14 have an additional role in angiogenesis: they are deposited in the endothelial cell and pericyte extracellular matrix, and interact with cell membrane components. Interaction of sVEGFR-1 with α5β1 integrin on endothelial cell membranes regulates vessel growth, triggering a dynamic, pro-angiogenic phenotype. Interaction of sVEGFR-1/sFlt1-14 with cell membrane glycosphingolipids in lipid rafts controls kidney cell morphology and glomerular barrier functions. These cell-matrix contacts represent attractive novel targets for pharmacological intervention in addition to those addressing interactions between VEGFs and their receptors

    Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers.

    Get PDF
    Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.Comment: 10 pages, 8 figures, ISMAR 202

    Texts: A case study of joint action

    Get PDF
    Under embargo until: 2022-04-16Our linguistic communication often takes the form of creating texts. In this paper, we propose that creating texts or ‘texting’ is a form of joint action. We examine the nature and evolution of this joint action. We argue that creating texts ushers in a special type of joint action, which, while lacking some central features of normal, everyday joint actions such as spatio-temporal collocation of agency and embodiment, nonetheless results in an authentic, strong, and unique type of joint action agency. This special type of agency is already present in creating texts in general and is further augmented in creating texts through digital media. We propose that such a unique type of joint action agency has a transformative effect on the experience of our sense of agency and subjectivity. We conclude with the implications of the proposal for social cognition and social agency. The paper combines research in philosophy of mind with the emerging fields of digital humanities and text technology.publishedVersio

    \u3cem\u3eWater Expert\u3c/em\u3e: A Conceptualized Framework for Development of a Rule-Based Decision Support System for Distribution System Decontamination

    Get PDF
    Significant drinking water contamination events pose a serious threat to public and environmental health. Water utilities often must make timely, critical decisions without evaluating all facets of the incident. The data needed to enact informed decisions are inevitably dispersant and disparate, originating from policy, science, and heuristic contributors. Water Expert is a functioning hybrid decision support system (DSS) and expert system framework that emphasizes the meshing of parallel data structures in order to expedite and optimize the decision pathway. Delivered as a thin-client application through the user\u27s web browser, Water Expert\u27s extensive knowledgebase is a product of inter-university collaboration that methodically pieced together system decontamination procedures. Decontamination procedures are investigated through consultation with subject matter experts, literature review, and prototyping with stakeholders. This paper discusses the development of Water Expert, analyzing the development process underlying the DSS and the system\u27s existing architecture specifications. Water Expert constitutes the first system to employ a combination of deterministic and heuristic models which provide decontamination solutions for water distribution systems. Results indicate that the decision making process following a contamination event is a multi-disciplinary effort. This contortion of multiple inputs and objectives limit the ability of the decision maker to find optimum solutions without technological intervention

    Innovative Approaches to Option Generation

    Get PDF
    Central and local governments often employ sophisticated modelling and appraisal procedures to ensure that the transport strategies and schemes that are selected for implementation meet policy objectives and are economically efficient. But relatively little effort has been made by the profession to develop methods to assist with the generation of appropriate and innovative options which form the core inputs to this whole process. The paper first summarises UK local authority views about the importance of option generation and their current ability to develop suitable options. It then provides an overview of methods that have been used in a variety of disciplines and policy areas to generate options. Some mainly represent or package existing knowledge, while others encourage ‘outside-the-box’ thinking, with the aim of developing solutions that have not previously been thought of. Methods range from those that are highly quantitative and replicable, to others that are qualitative and much more subjective in nature. Four option generation tools developed as part of the DISTILLATE project are described and illustrated with case study examples. Two apply at the strategic level; one is designed to assist in selecting packages of measures that contribute to an urban transport/land use strategy, while the other assists in identifying accessibility problems experienced by different population groups, and in generating a range of potential solutions. The other two apply at the scheme level and are more participatory in nature; they deal with streetspace allocation and with the improvement of community spaces

    Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment

    Get PDF
    Metabolism is at the heart of many biotechnologies from biofuels to medical diagnostics. Metabolomic methods that provide glimpses into cellular metabolism have rapidly developed into a critical component of the biotechnological development process. Most metabolomics methods have focused on what is happening inside the cell. Equally important are the biochemical transformations of the cell, and their effect on other cells and their environment; the exometabolome. Exometabolomics is therefore gaining popularity as a robust approach for obtaining rich phenotypic data, and being used in bioprocessing and biofuel development. Mass spectrometry imaging approaches, including several nanotechnologies, provide complimentary information by localizing metabolic processes within complex biological matrices. Together, the two technologies can provide new insights into the metabolism and interactions of cells

    A Framework to Develop Anomaly Detection/Fault Isolation Architecture Using System Engineering Principles

    Get PDF
    For critical systems, timely recognition of an anomalous condition immediately starts the evaluation process. For complex systems, isolating the fault to a component or subsystem results in corrective action sooner so that undesired consequences may be minimized. There are many unique anomaly detection and fault isolation capabilities available with innovative techniques to quickly discover an issue and identify the underlying problems. This research develops a framework to aid in the selection of appropriate anomaly detection and fault isolation technology to augment a given system. To optimize this process, the framework employs a model based systems engineering approach. Specifically, a SysML model is generated that enables a system-level evaluation of alternative detection and isolation techniques, and subsequently identifies the preferable application(s) from these technologies A case study is conducted on a cryogenic liquid hydrogen system that was used to fuel the Space Shuttles at the Kennedy Space Center, Florida (and will be used to fuel the next generation Space Launch System rocket). This system is operated remotely and supports time-critical and highly hazardous operations making it a good candidate to augment with this technology. As the process depicted by the framework down-selects to potential applications for consideration, these too are tested in their ability to achieve required goals

    New Generation of Instrumented Ranges: Enabling Automated Performance Analysis

    Get PDF
    Military training conducted on physical ranges that match a unit’s future operational environment provides an invaluable experience. Today, to conduct a training exercise while ensuring a unit’s performance is closely observed, evaluated, and reported on in an After Action Review, the unit requires a number of instructors to accompany the different elements. Training organized on ranges for urban warfighting brings an additional level of complexity—the high level of occlusion typical for these environments multiplies the number of evaluators needed. While the units have great need for such training opportunities, they may not have the necessary human resources to conduct them successfully. In this paper we report on our US Navy/ONR-sponsored project aimed at a new generation of instrumented ranges, and the early results we have achieved. We suggest a radically different concept: instead of recording multiple video streams that need to be reviewed and evaluated by a number of instructors, our system will focus on capturing dynamic individual warfighter pose data and performing automated performance evaluation. We will use an in situ network of automatically-controlled pan-tilt-zoom video cameras and personal position and orientation sensing devices. Our system will record video, reconstruct dynamic 3D individual poses, analyze, recognize events, evaluate performances, generate reports, provide real-time free exploration of recorded data, and even allow the user to generate ‘what-if’ scenarios that were never recorded. The most direct benefit for an individual unit will be the ability to conduct training with fewer human resources, while having a more quantitative account of their performance (dispersion across the terrain, ‘weapon flagging’ incidents, number of patrols conducted). The instructors will have immediate feedback on some elements of the unit’s performance. Having data sets for multiple units will enable historical trend analysis, thus providing new insights and benefits for the entire service.Office of Naval Researc
    • …
    corecore