755 research outputs found

    Optically Enabled ADCs and Application to Optical Communications

    Get PDF
    Electrical-optical signal processing has been shown to be a promising path to overcome the limitations of state-of-the-art all-electrical data converters. In addition to ultra-broadband signal processing, it allows leveraging ultra-low jitter mode-locked lasers and thus increasing the aperture jitter limited effective number of bits at high analog signal frequencies. In this paper, we review our recent progress towards optically enabled time- and frequency-interleaved analog-to-digital converters, as well as their monolithic integration in electronic-photonic integrated circuits. For signal frequencies up to 65 GHz, an optoelectronic track-and-hold amplifier based on the source-emitter-follower architecture is shown as a power efficient approach in optically enabled BiCMOS technology. At higher signal frequencies, integrated photonic filters enable signal slicing in the frequency domain and further scaling of the conversion bandwidth, with the reconstruction of a 140 GHz optical signal being shown. We further show how such optically enabled data converter architectures can be applied to a nonlinear Fourier transform based integrated transceiver in particular and discuss their applicability to broadband optical links in general

    Massive MU-MIMO-OFDM Downlink with One-Bit DACs and Linear Precoding

    Full text link
    Massive multiuser (MU) multiple-input multiple- output (MIMO) is foreseen to be a key technology in future wireless communication systems. In this paper, we analyze the downlink performance of an orthogonal frequency division multiplexing (OFDM)-based massive MU-MIMO system in which the base station (BS) is equipped with 1-bit digital-to-analog converters (DACs). Using Bussgang's theorem, we characterize the performance achievable with linear precoders (such as maximal-ratio transmission and zero forcing) in terms of bit error rate (BER). Our analysis accounts for the possibility of oversampling the time-domain transmit signal before the DACs. We further develop a lower bound on the information-theoretic sum-rate throughput achievable with Gaussian inputs. Our results suggest that the performance achievable with 1-bit DACs in a massive MU-MIMO-OFDM downlink are satisfactory provided that the number of BS antennas is sufficiently large

    Voltage-to-Time Converter for High-Speed Time-Based Analog-to-Digital Converters

    Get PDF
    In modern complementary metal oxide semiconductor (CMOS) technologies, the supply voltage scales faster than the threshold voltage (Vth) of the transistors in successive smaller nodes. Moreover, the intrinsic gain of the transistors diminishes as well. Consequently, these issues increase the difficulty of designing higher speed and larger resolution analog-to-digital converters (ADCs) employing voltage-domain ADC architectures. Nevertheless, smaller transistor dimensions in state-of-the-art CMOS technologies leads to reduced capacitance, resulting in lower gate delays. Therefore, it becomes beneficial to first convert an input voltage to a 'time signal' using a voltage-to-time converter (VTC), instead of directly converting it into a digital output. This 'time-signal' could then be converted to a digital output through a time-to-digital converter (TDC) for complete analog-to-digital conversion. However, the overall performance of such an ADC will still be limited to the performance level of the voltage-to-time conversion process. Hence, this thesis presents the design of a linear VTC for a high-speed time-based ADC in 28 nm CMOS process. The proposed VTC consists of a sample-and-hold (S/H) circuit, a ramp generator and a comparator to perform the conversion of the input signal from the voltage to the time domain. Larger linearity is attained by integrating a constant current (with high output impedance) over a capacitor, generating a linear ramp. The VTC operates at 256 MSPS consuming 1.3 mW from 1 V supply with a full-scale 1 V pk-pk differential input signal, while achieving a time-domain output signal with a spurious-free-dynamic-range (SFDR) of 77 dB and a signal-to-noise-and-distortion ratio (SNDR) of 56 dB at close to Nyquist frequency (f = 126.5 MHz). The proposed VTC attains an output range of 2.7 ns, which is the highest linear output range for a VTC at this speed, published to date

    A 28-nm CMOS 1 V 3.5 GS/s 6-bit DAC with signal-independent delta-I noise DfT scheme

    Get PDF
    This paper presents a 3.5GSps 6-bit current-steering DAC with auxiliary circuitry to assist testing in a 1V digital 28nm CMOS process. The DAC uses only thin-oxide transistors and occupies 0.035mm2, making it suitable to embedding in VLSI systems, e.g. FPGA. To cope with the IC process variability, a unit element approach is generally employed. The 3 MSBs are implemented as 7 unary D/A cells and the 3 LSBs as 3 binary D/A cells, using appropriately reduced number of unit elements. Furthermore, all digital gates only make use of two basic unit blocks: a buffer and a multiplexer. For testing, a memory block of 5kbits is placed on-chip, which is externally loaded in a serial way but internally read in an 8x time-interleaved way. The memory is organized around 48 clocked 104-bit shift-registers. It keeps the resulting switching disturbances signal-independent and hence avoids inducing output non-linearity errors, even when a common power supply is shared with the DAC. This novelty allows reliable testing of the DAC core, while avoiding performance limitation risks of handling high-speed off-chip data streams. The DAC SFDR>40dB bandwidth is 0.8GHz, while the IM

    A CMOS Digital Beamforming Receiver

    Full text link
    As the demand for high speed communication is increasing, emerging wireless techniques seek to utilize unoccupied frequency ranges, such as the mm-wave range. Due to high path loss for higher carrier frequencies, beamforming is an essential technology for mm-wave communication. Compared to analog beamforming, digital beamforming provides multiple simultaneous beams without an SNR penalty, is more accurate, enables faster steering, and provides full access to each element. Despite these advantages, digital beamforming has been limited by high power consumption, large die area, and the need for large numbers of analog-to-digital converters. Furthermore, beam squinting errors and ADC non-linearity limit the use of large digital beamforming arrays. We address these limitations. First, we address the power and area challenge by combining Interleaved Bit Stream Processing (IL-BSP) with power and area efficient Continuous-Time Band-Pass Delta-Sigma Modulators (CTBPDSMs). Compared to conventional DSP, IL-BSP reduces both power and area by 80%. Furthermore, the new CTBPDSM architecture reduces ADC area by 67% and the energy per conversion by 43% compared to previous work. Second, we introduce the first integrated digital true-time-delay digital beamforming receiver to resolve the beam squinting. True-time-delay beamforming eliminates squinting, making it an ideal choice for large-array wide-bandwidth applications. Third, we present a new current-steering DAC architecture that provides a constant output impedance to improve ADC linearity. This significantly reduces distortion, leading to an SFDR improvement of 13.7 dB from the array. Finally, we provide analysis to show that the ADC power consumption of a digital beamformer is comparable to that of the ADC power for an analog beamformer. To summarize, we present a prototype phased array and a prototype timed array, both with 16 elements, 4 independent beams, a 1 GHz center frequency, and a 100 MHz bandwidth. Both the phased array and timed array achieve nearly ideal conventional and adaptive beam patterns, including beam tapering and adaptive nulling. With an 11.2 dB array gain, the phased array achieves a 58.5 dB SNDR over a 100 MHz bandwidth, while consuming 312 mW and occupying 0.22 mm2. The timed array achieves an EVM better than -37 dB for 5 MBd QAM-256 and QAM-512, occupies only 0.29 mm2, and consumes 453 mW.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147716/1/smjang_1.pd

    Hybrid analog-digital transmit beamforming for spectrum sharing backhaul networks

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper deals with the problem of analog-digital transmit beamforming under spectrum sharing constraints for backhaul systems. In contrast to fully digital designs, where the spatial processing is done at baseband unit with all the flexible computational resources of digital processors, analog-digital beamforming schemes require that certain processing is done through analog components, such as phase-shifters or switches. These analog components do not have the same processing flexibility as the digital processor, but on the other hand, they can substantially reduce the cost and complexity of the beamforming solution. This paper presents the joint optimization of the analog and digital parts, which results in a nonconvex, NP-hard, and coupled problem. In order to solve it, an alternating optimization with a penalized convex-concave method is proposed. According to the simulation results, this novel iterative procedure is able to find a solution that behaves close to the fully digital beamforming upper bound scheme.Peer ReviewedPostprint (author's final draft
    corecore