248 research outputs found

    Development of a Resource Manager Framework for Adaptive Beamformer Selection

    Get PDF
    Adaptive digital beamforming (DBF) algorithms are designed to mitigate the effects of interference and noise in the electromagnetic (EM) environment encountered by modern electronic support (ES) receivers. Traditionally, an ES receiver employs a single adaptive DBF algorithm that is part of the design of the receiver system. While the traditional form of receiver implementation is effective in many scenarios it has inherent limitations. This dissertation proposes a new ES receiver framework capable of overcoming the limitations of traditional ES receivers. The proposed receiver framework is capable of forming multiple, independent, simultaneous adaptive digital beams toward multiple signals of interest in an electromagnetic environment. The main contribution of the research is the development, validation, and verification of a resource manager (RM) algorithm. The RM estimates a set of parameters that characterizes the electromagnetic environment and selects an adaptive digital beam forming DBF algorithm for implementation toward all each signal of interest (SOI) in the environment. Adaptive DBF algorithms are chosen by the RM based upon their signal to interference plus noise ratio (SINR) improvement ratio and their computational complexity. The proposed receiver framework is demonstrated to correctly estimate the desired electromagnetic parameters and select an adaptive DBF from the LUT

    Retournement temporel : application aux réseaux mobiles

    Get PDF
    This thesis studies the time reversal technique to improve the energy efficiency of future mobile networks and reduce the cost of future mobile devices. Time reversal technique consists in using the time inverse of the propagation channel impulse response (between a transceiver and a receiver) as a prefilter. Such pre-filtered signal is received with a stronger power (this is spatial focusing) and with a strong main echo, relatively to secondary echoes (this is time compression). During a previous learning phase, the transceiver estimates the channel by measuring the pilot signal emitted by the receiver. Space-time focusing is obtained only at the condition that the propagation remains identical between the learning phase and the data transmission phase: this is the ‘channel reciprocity’ condition. Numerous works show that spatial focusing allows for the reduction of the required transmit power for a given target received power, on the one hand, and that time compression allow for the reduction of the required complexity at the receiver side to handle multiple echoes, on the other hand. However, studies on complexity reduction are limited to ultra wideband. Some works of this thesis (based on simulations and experimental measurements) show that, for bands which are more typical for future networks (a carrier frequency of 1GHz and a spectrum of 30 MHz to 100 MHz), thanks to time reversal, a simple receiver and a mono-carrier signal are sufficient to reach high data rates. Moreover, the channel reciprocity condition is not verified in two scenarios which are typical from mobile networks. Firstly, in most European mobile networks, the frequency division duplex mode is used. This mode implies that the transceiver and the receiver communicate on distinct carriers, and therefore through different propagation channels. Secondly, when considering a receiver on a moving connected vehicle, the transceiver and the receiver communicate one with each other at distinct instants, corresponding to distinct positions of the vehicles, and therefore through different propagation channels. Some works of this thesis propose solutions to obtain space-time focusing for these two scenarios. Finally, some works of this thesis explore the combination of time reversal with other recent signal processing techniques (spatial modulation, on the one hand, a new multi-carrier waveform, on the other hand), or new deployment scenarios (millimeter waves and large antenna arrays to interconnect the nodes of an ultra dense network) or new applications (guidance and navigation) which can be envisaged for future mobile networks.Cette thèse étudie la technique dite de ‘Retournement Temporel’ afin d’améliorer l’efficacité énergétique des futurs réseaux mobiles d’une part, et réduire le coût des futurs terminaux mobiles, d’autre part. Le retournement temporel consiste à utiliser l’inverse temporel de la réponse impulsionnelle du canal de propagation entre un émetteur et un récepteur pour préfiltrer l’émission d’un signal de données. Avantageusement, le signal ainsi préfiltré est reçu avec une puissance renforcée (c’est la focalisation spatiale) et un écho principal qui est renforcé par rapport aux échos secondaires (c’est la compression temporelle). Lors d’une étape préalable d’apprentissage, l’émetteur estime le canal en mesurant un signal pilote provenant du récepteur. La focalisation spatiotemporelle n’est obtenue qu’à condition que la propagation demeure identique entre la phase d’apprentissage et la phase de transmission de données : c’est la condition de ‘réciprocité du canal’. De nombreux travaux montrent que la focalisation spatiale permet de réduire la puissance émise nécessaire pour atteindre une puissance cible au récepteur d’une part, et que la compression temporelle permet de réduire la complexité du récepteur nécessaire pour gérer l’effet des échos multiples, d’autre part. Cependant, les études sur la réduction de la complexité du récepteur se limitent à l’ultra large bande. Des travaux de cette thèse (basés sur des simulations et des mesures expérimentales) montrent que pour des bandes de fréquences plus typiques des futurs réseaux mobiles (fréquence porteuse à 1GHz et spectre de 30 MHz à 100 MHz), grâce au retournement temporel, un récepteur simple et un signal monoporteuse suffisent pour atteindre de hauts débits. En outre, la condition de réciprocité du canal n’est pas vérifiée dans deux scénarios typiques des réseaux mobiles. Tout d’abord, dans la plupart des réseaux mobiles européens, le mode de duplex en fréquence est utilisé. Ce mode implique que l’émetteur et le récepteur communiquent l’un avec l’autre sur des fréquences porteuses distinctes, et donc à travers des canaux de propagations différents. De plus, lorsqu’on considère un récepteur sur un véhicule connecté en mouvement, l’émetteur et le récepteur communiquent l’un avec l’autre à des instants distincts, correspondants à des positions distinctes du véhicule, et donc à travers des canaux de propagations différents. Des travaux de cette thèse proposent des solutions pour obtenir la focalisation spatio-temporelle dans ces deux scenarios. Enfin, des travaux de la thèse explorent la combinaison du retournement temporel avec d’autres techniques de traitement de signal récentes (la modulation spatiale, d’une part, et une nouvelle forme d’onde multiporteuse, d’autre part), ou des scenarios de déploiement nouveaux (ondes millimétriques et très grands réseaux d’antennes pour inter-connecter les noeuds d’un réseau ultra dense) ou de nouvelles applications (guidage et navigation) envisageables pour les futurs réseaux mobiles

    Adaptive Illumination Patterns for Radar Applications

    Get PDF
    The fundamental goal of Fully Adaptive Radar (FAR) involves full exploitation of the joint, synergistic adaptivity of the radar\u27s transmitter and receiver. Little work has been done to exploit the joint space time Degrees-of-Freedom (DOF) available via an Active Electronically Steered Array (AESA) during the radar\u27s transmit illumination cycle. This research introduces Adaptive Illumination Patterns (AIP) as a means for exploiting this previously untapped transmit DOF. This research investigates ways to mitigate clutter interference effects by adapting the illumination pattern on transmit. Two types of illumination pattern adaptivity were explored, termed Space Time Illumination Patterns (STIP) and Scene Adaptive Illumination Patterns (SAIP). Using clairvoyant knowledge, STIP demonstrates the ability to remove sidelobe clutter at user specified Doppler frequencies, resulting in optimum receiver performance using a non-adaptive receive processor. Using available database knowledge, SAIP demonstrated the ability to reduce training data heterogeneity in dense target environments, thereby greatly improving the minimum discernable velocity achieved through STAP processing

    An optical distance sensor : tilt robust differential confocal measurement with mm range and nm uncertainty

    Get PDF
    Compared with conventional high-end optical systems, application of freeform optics offers many advantages. Their widespread use, however, is held back by the lack of a suitable measurement method.The NANOMEFOS project aims at realizing a universal freeform measurement machine to fill that void.The principle of operation of this machine requires a novel sensor for surface distance measurement, the development and realization of which is the objective of the work presented in this thesis. The sensor must enable non-contact, absolute distance measurement of surfaces with reflectivities from 3.5% to 99% over 5 mm range, with 1 nm resolution and a 2s measurement uncertainty of 10 nm for surfaces perpendicular to the measurement direction and 35 nm for surfaces with tilts up to 5°. To meet these requirements, a dual-stage design is proposed: a primary measurement system tracks the surface under test by translating its object lens, while the secondary measurement system measures the displacement of this object lens. After an assessment of various measurement principles through comparison of characteristics inherent to their principle of operation and the possibilities for adaptation, the differential confocal measurement has been selected as the primary measurement method. Interferometry is used as secondary measurement method. To allow for correction of tilt dependent error through calibration, a third measurement system has been added, which measures through which part of the aperture the light returns. An analytical model of the differential confocal measurement principle has been derived to enable optimization. To gain experience with differential confocal measurement, a demonstrator has been built, which has resulted in insights and design rules for prototype development. The models show satisfactory agreement with the experimental results generated using the demonstrator, thus building confidence that the models can be applied as design and optimization tools. Various properties that characterize the performance of a differential confocal measurement system have been identified. Their dependence on the design parameters has been studied through simulations based on the models. The results of this study are applied to optimize the sensor for use in NANOMEFOS. An optical system has been designed in which the interferometer and the differential confocal systems are integrated in a compact design. The optical path of the differential confocal system has been folded using prisms and mirrors so that it can be realized within the allotted volume envelope. For the same reason, many components are adapted from commercially available parts or are custom made. An optomechanical and mechatronic design has been made around the optical system. A custom focusing unit has been designed that comprises a guidance mechanism and actuator to enable tracking of the surface. To achieve a low measurement uncertainty, it aims at accurate motion, high bandwidth and low dissipation. The lateral position of the guidance reproduces within 20 nm and from the frequency response, it is expected that a control bandwidth of at least 800 Hz can be realized. Power dissipation depends on the form of the freeform surface and is a few mW for most expected trajectories. Partly custom electronics are used for signal processing, and to drive the laser and the focusing unit. Control strategies for interferometer nulling, focus locking and surface tracking have been developed, implemented and tested. Various tests have been performed on the system to evaluate the performance. Calibrations must be carried out to achieve the required measurement uncertainty. One calibration is based on a new method to measure tilt dependency of distance sensors. The sensor realized has 5 mm measurement range, -2.5 µm to 1.5 µm tracking range, sub-nanometer resolution, and a small-signal bandwidth of 150 kHz. Using the test results, the 2s measurement uncertainty after calibration is estimated to be 4.2 nm for measurement of rotationally symmetric surfaces, 21 nm for measurement of medium freeform surfaces and 34 nm for measurement of heavily freeform surfaces. To test the performance of the machine with the sensor integrated, measurements of a tilted flat have been carried out. In these measurements, a tilted flat serves as a reference freeform with known surface form. The measurements demonstrate the reduction of tilt dependent error using the new calibration method. A tilt robust, single point distance sensor with millimeter range and nanometer uncertainty has been developed, realized and tested. It is installed in the freeform measurement machine for which it has been developed and is currently used for the measurement of optical surfaces

    Detection of exozodiacal dust: a step toward Earth-like planet characterization with infrared interferometry

    Get PDF
    The existence of other habitable worlds and the possible development of life elsewhere in the Universe have been among mankind's fundamental questions for thousands of years. These interrogations about our origins and place in the Universe are today at the dawn of being answered in scientific terms. The key year was 1995 with the discovery of the first extrasolar planet orbiting around a solar-type star. About 400 extrasolar planets are known today and the possibility to identify habitable worlds and even life among them largely contributes to the growing interest about their nature and properties. However, characterizing planetary systems is a very difficult task due to both the huge contrast and the small angular separation between the host stars and their environment. New techniques have emerged during the past decades with the purpose of tackling these fantastic observational challenges. In that context, infrared interferometry is a very promising technique, since it provides the required angular resolution to separate the emission of the star from that of its environment. This dissertation is devoted to the characterization of extrasolar planetary systems using the high angular resolution and dynamic range capabilities of infrared interferometric techniques. The first part of the present work is devoted to the detection with current interferometric facilities of warm dust within the first few astronomical units of massive debris discs around nearby stars. In order to extend the imaging of planetary systems to fainter discs and to extrasolar planets, we investigate in a second step the performance of future space-based nulling interferometers and make a comparison with ground-based projects. Finally, the third part of this work is dedicated to the impact of exozodiacal discs on the performance of future life-searching space missions, the goal being to characterize extrasolar planets with sizes down to that of the Earth

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Terahertz response of microfluidic-jetted fabricated 3D flexible metamaterials

    Get PDF
    Conventional materials exhibit some restrictions on their electromagnetic properties. Especially in terahertz region, for example, materials that exhibit magnetic response are far less common in nature than materials that exhibit electric response. However, materials can be designed, namely artificial man-made metamaterials that exhibit electromagnetic properties that are not found in natural materials by adjusting, for example, the dielectric, magnetic or structural parameters of the constituent elements. This dissertation demonstrates the use of new fabrication techniques to construct metamaterials in THz range via a material deposition system. The metamaterials are fabricated by stacking alternative layers with conventional designs such as single ring- split ring resonators (SRR) and microstrips to form a 3D metamaterial structure. Conductive nano-particle Ag, Cu and semiconductor polymer fluids are used as structural mediums. The metamaterials are fabricated on polyimide substrate. Their flexible nature will be advantageous in future device innovations. In order to obtain electromagnetic resonance in the terahertz range, the dimensions of the single ring-SRR and microstrips are first approximated by analytical methods and then confirmed by numerical simulation. The fabricated metamaterials are then characterized in transmission mode using Time-domain THz Spectroscopy (THz-TDS) in the 0.1 to 2 THz range
    • …
    corecore