17 research outputs found

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Vicarious Methodologies to Assess and Improve the Quality of the Optical Remote Sensing Images: A Critical Review

    Get PDF
    Over the past decade, number of optical Earth observing satellites performing remote sensing has increased substantially, dramatically increasing the capability to monitor the Earth. The quantity of remote sensing satellite increase is primarily driven by improved technology, miniaturization of components, reduced manufacturing, and launch cost. These satellites often lack on-board calibrators that a large satellite utilizes to ensure high quality (e.g., radiometric, geometric, spatial quality, etc.) scientific measurement. To address this issue, this work presents “best” vicarious image quality assessment and improvement techniques for those kinds of optical satellites which lacks on-board calibration system. In this article, image quality categories have been explored, and essential quality parameters (e.g., absolute and relative calibration, aliasing, etc.) have been identified. For each of the parameters, appropriate characterization methods are identified along with its specifications or requirements. In cases of multiple methods, recommendation has been made based-on the strengths and weaknesses of each method. Furthermore, processing steps have been presented, including examples. Essentially, this paper provides a comprehensive study of the criteria that needs to be assessed to evaluate remote sensing satellite data quality, and best vicarious methodologies to evaluate identified quality parameters such as coherent noise, ground sample distance, etc
    corecore