140 research outputs found

    Jewish Studies in the Digital Age

    Get PDF
    The digitisation boom of the last two decades, and the rapid advancement of digital tools to analyse data in myriad ways, have opened up new avenues for humanities research. This volume discusses how the so-called digital turn has affected the field of Jewish Studies, explores the current state of the art and probes how digital developments can be harnessed to address the specific questions, challenges and problems in the field

    Unsupervised Discovery of Co-occurrence in Sparse High Dimensional Data

    Get PDF
    An efficient min-Hash based algorithm for discovery of dependencies in sparse high-dimensional data is presented. The dependencies are represented by sets of features co-occurring with high probability and are called co-ocsets. Sparse high dimensional descriptors, such as bag of words, have been proven very effective in the domain of image retrieval. To maintain high efficiency even for very large data collection, features are assumed independent. We show experimentally that co-ocsets are not rare, i.e. the independence assumption is often violated, and that they may ruin retrieval performance if present in the query image. Two methods for managing co-ocsets in such cases are proposed. Both methods significantly outperform the state-of-the-art in image retrieval, one is also significantly faster

    Jewish Studies in the Digital Age

    Get PDF
    The digitisation boom of the last two decades, and the rapid advancement of digital tools to analyse data in myriad ways, have opened up new avenues for humanities research. This volume discusses how the so-called digital turn has affected the field of Jewish Studies, explores the current state of the art and probes how digital developments can be harnessed to address the specific questions, challenges and problems in the field

    Utilization of the discrete differential evolution for optimization in multidimensional point clouds

    Get PDF
    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.Web of Scienceart. no. 632953

    Accurate and Efficient Mapping of the Cross-Linked microRNA-mRNA Duplex Reads

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.MicroRNA (miRNA) trans-regulates the stability of many mRNAs and controls their expression levels. Reconstruction of the miRNA-mRNA interactome is key to the understanding of the miRNA regulatory network and related biological processes. However, existing miRNA target prediction methods are limited to canonical miRNA-mRNA interactions and have high false prediction rates. Other experimental methods are low throughput and cannot be used to probe genome-wide interactions. To address this challenge, the Cross-linking Ligation and Sequencing of Hybrids (CLASH) technology was developed for high-throughput probing of transcriptome-wide microRNA-mRNA interactions in vivo. The mapping of duplex reads, chimeras of two ultra-short RNA strands, poses computational challenges to current mapping and alignment methods. To address this issue, we developed CLAN (CrossLinked reads ANalysis toolkit). CLAN generated a comparable mapping of singular reads to other tools, and significantly outperformed in mapping simulated and real CLASH duplex reads, offering a potential application to other next-generation sequencing-based duplex-read-generating technologies

    Aggregating Local Features into Bundles for High-Precision Object Retrieval

    Get PDF
    Due to the omnipresence of digital cameras and mobile phones the number of images stored in image databases has grown tremendously in the last years. It becomes apparent that new data management and retrieval techniques are needed to deal with increasingly large image databases. This thesis presents new techniques for content-based image retrieval where the image content itself is used to retrieve images by visual similarity from databases. We focus on the query-by-example scenario, assuming the image itself is provided as query to the retrieval engine. In many image databases, images are often associated with metadata, which may be exploited to improve the retrieval performance. In this work, we present a technique that fuses cues from the visual domain and textual annotations into a single compact representation. This combined multimodal representation performs significantly better compared to the underlying unimodal representations, which we demonstrate on two large-scale image databases consisting of up to 10 million images. The main focus of this work is on feature bundling for object retrieval and logo recognition. We present two novel feature bundling techniques that aggregate multiple local features into a single visual description. In contrast to many other works, both approaches encode geometric information about the spatial layout of local features into the corresponding visual description itself. Therefore, these descriptions are highly distinctive and suitable for high-precision object retrieval. We demonstrate the use of both bundling techniques for logo recognition. Here, the recognition is performed by the retrieval of visually similar images from a database of reference images, making the recognition systems easily scalable to a large number of classes. The results show that our retrieval-based methods can successfully identify small objects such as logos with an extremely low false positive rate. In particular, our feature bundling techniques are beneficial because false positives are effectively avoided upfront due to the highly distinctive descriptions. We further demonstrate and thoroughly evaluate the use of our bundling technique based on min-Hashing for image and object retrieval. Compared to approaches based on conventional bag-of-words retrieval, it has much higher efficiency: the retrieved result lists are shorter and cleaner while recall is on equal level. The results suggest that this bundling scheme may act as pre-filtering step in a wide range of scenarios and underline the high effectiveness of this approach. Finally, we present a new variant for extremely fast re-ranking of retrieval results, which ranks the retrieved images according to the spatial consistency of their local features to those of the query image. The demonstrated method is robust to outliers, performs better than existing methods and allows to process several hundreds to thousands of images per second on a single thread
    corecore