797 research outputs found

    Achievable Information Rates for Coded Modulation with Hard Decision Decoding for Coherent Fiber-Optic Systems

    Get PDF
    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \emph{hard decision decoder} which, however, exploits \emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.Comment: Published in IEEE/OSA Journal of Lightwave Technology, 201

    Spatially-Coupled QDLPC Codes

    Full text link
    Spatially-coupled (SC) codes is a class of convolutional LDPC codes that has been well investigated in classical coding theory thanks to their high performance and compatibility with low-latency decoders. We describe toric codes as quantum counterparts of classical two-dimensional spatially-coupled (2D-SC) codes, and introduce spatially-coupled quantum LDPC (SC-QLDPC) codes as a generalization. We use the convolutional structure to represent the parity check matrix of a 2D-SC code as a polynomial in two indeterminates, and derive an algebraic condition that is both necessary and sufficient for a 2D-SC code to be a stabilizer code. This algebraic framework facilitates the construction of new code families. While not the focus of this paper, we note that small memory facilitates physical connectivity of qubits, and it enables local encoding and low-latency windowed decoding. In this paper, we use the algebraic framework to optimize short cycles in the Tanner graph of 2D-SC HGP codes that arise from short cycles in either component code. While prior work focuses on QLDPC codes with rate less than 1/10, we construct 2D-SC HGP codes with small memory, higher rates (about 1/3), and superior thresholds.Comment: 25 pages, 7 figure

    Spatially coupled generalized LDPC codes: asymptotic analysis and finite length scaling

    Get PDF
    Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improved error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we study spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.This work was supported in part by the National Science Foundation under Grant ECCS-1710920, Grant OIA-1757207, and Grant HRD-1914635; in part by the European Research Council (ERC) through the European Union's Horizon 2020 research and innovation program under Grant 714161; and in part by the Spanish Ministry of Science, Innovation and University under Grant TEC2016-78434-C3-3-R (AEI/FEDER, EU)

    Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks

    Get PDF
    Error-correcting codes seek to address the problem of transmitting information efficiently and reliably across noisy channels. Among the most competitive codes developed in the last 70 years are low-density parity-check (LDPC) codes, a class of codes whose structure may be represented by sparse bipartite graphs. In addition to having the potential to be capacity-approaching, LDPC codes offer the significant practical advantage of low-complexity graph-based decoding algorithms. Graphical substructures called trapping sets, absorbing sets, and stopping sets characterize failure of these algorithms at high signal-to-noise ratios. This dissertation focuses on code design for and analysis of iterative graph-based message-passing decoders. The main contributions of this work include the following: the unification of spatially-coupled LDPC (SC-LDPC) code constructions under a single algebraic graph lift framework and the analysis of SC-LDPC code construction techniques from the perspective of removing harmful trapping and absorbing sets; analysis of the stopping and absorbing set parameters of hypergraph codes and finite geometry LDPC (FG-LDPC) codes; the introduction of multidimensional decoding networks that encode the behavior of hard-decision message-passing decoders; and the presentation of a novel Iteration Search Algorithm, a list decoder designed to improve the performance of hard-decision decoders. Adviser: Christine A. Kelle

    Continuous Transmission of Spatially Coupled LDPC Code Chains

    Get PDF
    We propose a novel encoding/transmission scheme called continuous chain (CC) transmission that is able to improve the finite-length performance of a system using spatially coupled low-density parity-check (SC-LDPC) codes. In CC transmission, instead of transmitting a sequence of independent code words from a terminated SC-LDPC code chain, we connect multiple chains in a layered format, where encoding, transmission, and decoding are performed in a continuous fashion. The connections between chains are created at specific points, chosen to improve the finite-length performance of the code structure under iterative decoding. We describe the design of CC schemes for different SC-LDPC code ensembles constructed from protographs: a (J,K) -regular SC-LDPC code chain, a spatially coupled repeat-accumulate (SC-RA) code, and a spatially coupled accumulate-repeat-jagged-accumulate (SC-ARJA) code. In all cases, significant performance improvements are reported and it is shown that using CC transmission only requires a small increase in decoding complexity and decoding delay with respect to a system employing a single SC-LDPC code chain for transmission.This material is based upon work supported in part by the National Science Foundation under Grant Nos. CCF-1161754 and CCSS-1710920, in part by NSERC Canada, and in part by the Spanish Ministry of Economy and Competitiveness and the Spanish National Research Agency under grants TEC2016-78434-C3-3-R (AEI/FEDER, EU) and Juan de la Cierva Fellowship IJCI-2014-19150

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor
    • …
    corecore