1,978 research outputs found

    Channel-Recurrent Autoencoding for Image Modeling

    Full text link
    Despite recent successes in synthesizing faces and bedrooms, existing generative models struggle to capture more complex image types, potentially due to the oversimplification of their latent space constructions. To tackle this issue, building on Variational Autoencoders (VAEs), we integrate recurrent connections across channels to both inference and generation steps, allowing the high-level features to be captured in global-to-local, coarse-to-fine manners. Combined with adversarial loss, our channel-recurrent VAE-GAN (crVAE-GAN) outperforms VAE-GAN in generating a diverse spectrum of high resolution images while maintaining the same level of computational efficacy. Our model produces interpretable and expressive latent representations to benefit downstream tasks such as image completion. Moreover, we propose two novel regularizations, namely the KL objective weighting scheme over time steps and mutual information maximization between transformed latent variables and the outputs, to enhance the training.Comment: Code: https://github.com/WendyShang/crVAE. Supplementary Materials: http://www-personal.umich.edu/~shangw/wacv18_supplementary_material.pd

    C4Synth: Cross-Caption Cycle-Consistent Text-to-Image Synthesis

    Full text link
    Generating an image from its description is a challenging task worth solving because of its numerous practical applications ranging from image editing to virtual reality. All existing methods use one single caption to generate a plausible image. A single caption by itself, can be limited, and may not be able to capture the variety of concepts and behavior that may be present in the image. We propose two deep generative models that generate an image by making use of multiple captions describing it. This is achieved by ensuring 'Cross-Caption Cycle Consistency' between the multiple captions and the generated image(s). We report quantitative and qualitative results on the standard Caltech-UCSD Birds (CUB) and Oxford-102 Flowers datasets to validate the efficacy of the proposed approach.Comment: To appear in the proceedings of IEEE Winter Conference on Applications of Computer Vision, WACV-201
    corecore