2,975 research outputs found

    The geography of megatrends affecting European agriculture

    Get PDF
    A range of intensifying pressures is making the future of European agriculture dynamic and contested. Insights into these pressures are needed to inform debates about the future of the sector. In this study, we use a foresight approach to identify, quantify and map megatrends. Megatrends are long-term driving forces which are observable today and will likely have transformational potential in the future. By mapping these megatrends at the regional scale, we establish a geography of megatrends and detect where they coincide. Four megatrends significant for the future of European agriculture at the regional scale are assessed: Climate change, demographic change, (post-) productivism shifts, and increasingly stringent environmental regulations. The direction and intensity of these megatrends differs between regions, which drives regions into different systemic lock-ins or dynamics. In most regions, megatrends converge to destabilize the current system, forewarning impending systemic changes. While the specific megatrends contributing to this instability differ regionally, this result highlights that many regions are on a dynamic rather than stable trajectory, and the governance challenge is to steer these dynamics towards a desirable future. However, some regions are found to be highly persistent, indicating that megatrends reinforce business as usual, and change needs to be triggered through purposeful governance. In a minority of regions megatrends may drive marginalization as the current system becomes increasingly unviable. We argue that research and policies concerning agricultural sustainability transitions should be cognizant of the regional diversity of European megatrends and the pressures they create

    Spatial Variations in Crop Growing Seasons Pivotal to Reproduce Global Fluctuations in Maize and Wheat Yields

    Get PDF
    Testing our understanding of crop yield responses to weather fluctuations at global scale is notoriously hampered by limited information about underlying management conditions, such as cultivar selection or fertilizer application. Here, we demonstrate that accounting for observed spatial variations in growing seasons increases the variance in reported national maize and wheat yield anomalies that can be explained by process-based model simulations from 34 to 58% and 47 to 54% across the 10 most weather-sensitive main producers, respectively. For maize, the increase in explanatory power is similar to the increase achieved by accounting for water stress, as compared to simulations assuming perfect water supply in both rainfed and irrigated agriculture. Representing water availability constraints in irrigation is of second-order importance. We improve the models explanatory power by better representing crops exposure to observed weather conditions, without modifying the weather response itself. This growing season adjustment now allows for a close reproduction of heat wave and drought impacts on crop yields

    Hydro-economic modeling with aquifer-river interactions to guide sustainable basin management

    Get PDF
    Policymakers in arid and semiarid basins face hard choices on water policies needed for adaptation to climate change. Hydro-economic modeling is a state-of-the art approach that can be used to guide the design and implementation of these policies in basins. A major gap in developments of hydro-economic modeling to date has been the weak integration of physically-based representations of water sources and uses such as the interaction between ground and surface water resources, to inform complex basin scale policy choices. This paper presents an integrated hydro-economic modeling framework to address this gap with application to an important and complex river basin in Spain, the Jucar basin, for the assessment of a range of climate change scenarios and policy choices. Results indicate that in absence of adequate policies protecting water resources and natural ecosystems, water users will strategically deplete reservoirs, aquifers and river flows for short-term adaptation to climate change, disregarding the impacts on the environment and future human activities. These impacts can be addressed by implementing sustainable management policies. However, these policies could have disproportionate costs for some stakeholders groups, and their opposition may undermine attempts at sustainable policy. These tradeoffs among water policy choices are important guides to the design of policies aimed at basin-wide adaptation to climate change

    Unveiling Drivers of Deforestation: Evidence from the Brazilian Amazon

    Get PDF
    The drivers of deforestation are the subject of many spatially explicit studies with considerable policy impact, yet few studies account for spatial dependence, thus neglecting spillover effects. In this work, we use high-resolution remotely sensed land cover change maps, extended with socioeconomic panel data for 141 municipalities in the state of Mato Grosso, Brazil, to investigate the role of agriculture in deforestation from 2006 until 2016. Our econometric model specifically accounts for spatial indirect effects from the dependent and explanatory variables, thus avoiding biased and inconsistent estimates. We identify indirect spillover effects from croplands and direct effects from cattle as significant deforestation drivers. Neglecting to explicitly account for spatial dependence considerably underestimates deforestation pressure of soy production. We conclude that spatial dynamics play a crucial role in deforestation and need to be considered in econometric studies, in order to facilitate informed policy decisions

    Global Pattern and Change of Cropland Soil Organic Carbon during 1901-2010: Roles of Climate, Atmospheric Chemistry, Land Use and Management

    Get PDF
    Soil organic carbon (SOC) in croplands is a key property of soil quality for ensuring food security and agricultural sustainability, and also plays a central role in the global carbon (C) budget. When managed sustainably, soils may play a critical role in mitigating climate change by sequestering C and decreasing greenhouse gas emissions into the atmosphere. However, the magnitude and spatio-temporal patterns of global cropland SOC are far from well constrained due to high land surface heterogeneity, complicated mechanisms, and multiple influencing factors. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse spatially-explicit gridded environmental data to quantify the long-term trend of SOC storage in global cropland area during 1901-2010 and identify the relative impacts of climate change, elevated CO2, nitrogen deposition, land cover change, and land management practices such as nitrogen fertilizer use and irrigation. Model results show that the total SOC and SOC density in the 2000s increased by 125% and 48.8%, respectively, compared to the early 20th century. This SOC increase was primarily attributed to cropland expansion and nitrogen fertilizer use. Factorial analysis suggests that climate change reduced approximately 3.2% (or 2,166 Tg C) of the total SOC over the past 110 years. Our results indicate that croplands have a large potential to sequester C through implementing better land use management practices, which may partially offset SOC loss caused by climate change

    A regional nuclear conflict would compromise global food security

    Get PDF
    A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history

    Modeling water resources management at the basin level: review and future directions

    Get PDF
    Water quality / Water resources development / Agricultural production / River basin development / Mathematical models / Simulation models / Water allocation / Policy / Economic aspects / Hydrology / Reservoir operation / Groundwater management / Drainage / Conjunctive use / Surface water / GIS / Decision support systems / Optimization methods / Water supply
    corecore