563 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Hierarchical Transformer with Spatio-Temporal Context Aggregation for Next Point-of-Interest Recommendation

    Full text link
    Next point-of-interest (POI) recommendation is a critical task in location-based social networks, yet remains challenging due to a high degree of variation and personalization exhibited in user movements. In this work, we explore the latent hierarchical structure composed of multi-granularity short-term structural patterns in user check-in sequences. We propose a Spatio-Temporal context AggRegated Hierarchical Transformer (STAR-HiT) for next POI recommendation, which employs stacked hierarchical encoders to recursively encode the spatio-temporal context and explicitly locate subsequences of different granularities. More specifically, in each encoder, the global attention layer captures the spatio-temporal context of the sequence, while the local attention layer performed within each subsequence enhances subsequence modeling using the local context. The sequence partition layer infers positions and lengths of subsequences from the global context adaptively, such that semantics in subsequences can be well preserved. Finally, the subsequence aggregation layer fuses representations within each subsequence to form the corresponding subsequence representation, thereby generating a new sequence of higher-level granularity. The stacking of encoders captures the latent hierarchical structure of the check-in sequence, which is used to predict the next visiting POI. Extensive experiments on three public datasets demonstrate that the proposed model achieves superior performance whilst providing explanations for recommendations. Codes are available at https://github.com/JennyXieJiayi/STAR-HiT

    Topic-enhanced memory networks for personalised point-of-interest recommendation

    Get PDF
    Point-of-Interest (POI) recommender systems play a vital role in people's lives by recommending unexplored POIs to users and have drawn extensive attention from both academia and industry. Despite their value, however, they still suffer from the challenges of capturing complicated user preferences and fine-grained user-POI relationship for spatio-temporal sensitive POI recommendation. Existing recommendation algorithms, including both shallow and deep approaches, usually embed the visiting records of a user into a single latent vector to model user preferences: this has limited power of representation and interpretability. In this paper, we propose a novel topic-enhanced memory network (TEMN), a deep architecture to integrate the topic model and memory network capitalising on the strengths of both the global structure of latent patterns and local neighbourhood-based features in a nonlinear fashion. We further incorporate a geographical module to exploit user-specific spatial preference and POI-specific spatial influence to enhance recommendations. The proposed unified hybrid model is widely applicable to various POI recommendation scenarios. Extensive experiments on real-world WeChat datasets demonstrate its effectiveness (improvement ratio of 3.25% and 29.95% for context-aware and sequential recommendation, respectively). Also, qualitative analysis of the attention weights and topic modeling provides insight into the model's recommendation process and results.China Scholarship Council and Cambridge Trus
    • …
    corecore