3,391 research outputs found

    Image-based Geolocalization by Ground-to-2.5D Map Matching

    Full text link
    We study the image-based geolocalization problem, aiming to localize ground-view query images on cartographic maps. Current methods often utilize cross-view localization techniques to match ground-view query images with 2D maps. However, the performance of these methods is unsatisfactory due to significant cross-view appearance differences. In this paper, we lift cross-view matching to a 2.5D space, where heights of structures (e.g., trees and buildings) provide geometric information to guide the cross-view matching. We propose a new approach to learning representative embeddings from multi-modal data. Specifically, we establish a projection relationship between 2.5D space and 2D aerial-view space. The projection is further used to combine multi-modal features from the 2.5D and 2D maps using an effective pixel-to-point fusion method. By encoding crucial geometric cues, our method learns discriminative location embeddings for matching panoramic images and maps. Additionally, we construct the first large-scale ground-to-2.5D map geolocalization dataset to validate our method and facilitate future research. Both single-image based and route based localization experiments are conducted to test our method. Extensive experiments demonstrate that the proposed method achieves significantly higher localization accuracy and faster convergence than previous 2D map-based approaches

    SliceMatch: Geometry-guided Aggregation for Cross-View Pose Estimation

    Full text link
    This work addresses cross-view camera pose estimation, i.e., determining the 3-Degrees-of-Freedom camera pose of a given ground-level image w.r.t. an aerial image of the local area. We propose SliceMatch, which consists of ground and aerial feature extractors, feature aggregators, and a pose predictor. The feature extractors extract dense features from the ground and aerial images. Given a set of candidate camera poses, the feature aggregators construct a single ground descriptor and a set of pose-dependent aerial descriptors. Notably, our novel aerial feature aggregator has a cross-view attention module for ground-view guided aerial feature selection and utilizes the geometric projection of the ground camera's viewing frustum on the aerial image to pool features. The efficient construction of aerial descriptors is achieved using precomputed masks. SliceMatch is trained using contrastive learning and pose estimation is formulated as a similarity comparison between the ground descriptor and the aerial descriptors. Compared to the state-of-the-art, SliceMatch achieves a 19% lower median localization error on the VIGOR benchmark using the same VGG16 backbone at 150 frames per second, and a 50% lower error when using a ResNet50 backbone

    Semantic Cross-View Matching

    Full text link
    Matching cross-view images is challenging because the appearance and viewpoints are significantly different. While low-level features based on gradient orientations or filter responses can drastically vary with such changes in viewpoint, semantic information of images however shows an invariant characteristic in this respect. Consequently, semantically labeled regions can be used for performing cross-view matching. In this paper, we therefore explore this idea and propose an automatic method for detecting and representing the semantic information of an RGB image with the goal of performing cross-view matching with a (non-RGB) geographic information system (GIS). A segmented image forms the input to our system with segments assigned to semantic concepts such as traffic signs, lakes, roads, foliage, etc. We design a descriptor to robustly capture both, the presence of semantic concepts and the spatial layout of those segments. Pairwise distances between the descriptors extracted from the GIS map and the query image are then used to generate a shortlist of the most promising locations with similar semantic concepts in a consistent spatial layout. An experimental evaluation with challenging query images and a large urban area shows promising results

    Semantic Visual Localization

    Full text link
    Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, e.g., in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes
    corecore