1,368 research outputs found

    Spatial stress and strain distributions of viscoelastic layers in oscillatory shear

    Get PDF
    One of the standard experimental probes of a viscoelastic material is to measure the response of a layer trapped between parallel surfaces, imposing either periodic stress or strain at one boundary and measuring the other. The relative phase between stress and strain yields solid-like and liquid-like properties, called the storage and loss moduli, respectively, which are then captured over a range of imposed frequencies. Rarely are the full spatial distributions of shear and normal stresses considered, primarily because they cannot be measured except at boundaries and the information was not deemed of particular interest in theoretical studies. Likewise, strain distributions throughout the layer were traditionally ignored except in a classical protocol of Ferry, Adler and Sawyer, based on snapshots of standing shear waves. Recent investigations of thin lung mucus layers exposed to oscillatory stress (breathing) and strain (coordinated cilia), however, suggest that the wide range of healthy conditions and environmental or disease assaults lead to conditions that are quite disparate from the “surface loading” and “gap loading” conditions that characterize classical rheometers. In this article, we extend our previous linear and nonlinear models of boundary stresses in controlled oscillatory strain to the entire layer. To illustrate non-intuitive heterogeneous responses, we characterize experimental conditions and material parameter ranges where the maximum stresses migrate into the channel interior

    Estimation of shear rate change in vertically oscillating non-Newtonian fluids: Predictions on particle settling

    Get PDF
    This study investigates the effect of oscillatory motion on velocity and shear rate change within different non-Newtonian, slightly viscoelastic fluids oscillated in a vertical U-shaped circular pipe. An estimation to quantify the influence on particle settling in an oscillatory environment is also presented. Flow visualization using particle image velocimetry (PIV) technique was deployed to compare the two-dimensional velocity field in the vertical plane of the U-tube axis and the resulting shear rate change in three different non-Newtonian fluids. The experiments were performed in a 1.2 m high, 50 mm diameter transparent test section, at room temperature (21 ± 0.5 °C) and atmospheric pressure. A piston was driven at harmonic motion via a gas buffer, to provide the driving force for the test fluids at four different low frequencies ranging from 0.1 – 0.75 Hz and at three different piston oscillation amplitude ratios of A = a/D = 0.3, 0.4 and 0.5, where a is the displacement amplitude of the piston and D is the pipe diameter. Oscillatory Reynolds number (ReÎŽ) based on Stokes layer thickness was used as the criteria for determining the specific flow regime. 36 different experimental cases were tested within the range of 2 < ReÎŽ < 34, and all the experimental cases exhibited the laminar flow regime. The study reveals that the axial velocity amplitude along the pipe centerline increases with the increasing frequency and with increasing oscillation amplitude irrespective of the non-Newtonian fluid type. The thickness of the shear region decreases with the increase of frequency. The change of shear rate is maximum near the wall region of the pipe and that is achieved at the maximum position of the phase cycle, where the axial velocity also possesses its highest magnitude. The most viscous and the least elastic fluid have reported a maximum reduction of viscosity as an effect of the oscillatory motion and the viscosity reduction becomes insignificant when the non-Newtonian fluids become less viscous.publishedVersio

    Power laws in microrheology experiments on living cells: comparative analysis and modelling

    Full text link
    We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single cells. In the first one, the creep function J(t) of a cell stretched between two glass plates is measured after applying a constant force step. In the second one, a micrometric bead specifically bound to transmembrane receptors is driven by an oscillating optical trap, and the viscoelastic coefficient Ge(ω)G_e(\omega) is retrieved. Both J(t)J(t) and Ge(ω)G_e(\omega) exhibit power law behavior: J(t)=A(t/t0)αJ(t)= A(t/t_0)^\alpha and Gˉe(ω)=ˉG0(ω/ω0)α\bar G_e(\omega)\bar = G_0 (\omega/\omega_0)^\alpha, with the same exponent α≈0.2\alpha\approx 0.2. This power law behavior is very robust ; α\alpha is distributed over a narrow range, and shows almost no dependance on the cell type, on the nature of the protein complex which transmits the mechanical stress, nor on the typical length scale of the experiment. On the contrary, the prefactors A0A_0 and G0G_0appear very sensitive to these parameters. Whereas the exponents α\alpha are normally distributed over the cell population, the prefactors A0A_0 and G0G_0 follow a log-normal repartition. These results are compared with other data published in the litterature. We propose a global interpretation, based on a semi-phenomenological model, which involves a broad distribution of relaxation times in the system. The model predicts the power law behavior and the statistical repartition of the mechanical parameters, as experimentally observed for the cells. Moreover, it leads to an estimate of the largest response time in the cytoskeletal network: τm≈1000\tau_m \approx 1000 s.Comment: 47 pages, 14 figures // v2: PDF file is now Acrobat Reader 4 (and up) compatible // v3: Minor typos corrected - The presentation of the model have been substantially rewritten (p. 17-18), in order to give more details - Enhanced description of protocols // v4: Minor corrections in the text : the immersion angles are estimated and not measured // v5: Minor typos corrected. Two references were clarifie

    Dilational Rheology of Fluid/Fluid Interfaces: Foundations and Tools

    Get PDF
    Fluid/fluid interfaces are ubiquitous in science and technology, and hence, the understanding of their properties presents a paramount importance for developing a broad range of soft interface dominated materials, but also for the elucidation of different problems with biological and medical relevance. However, the highly dynamic character of fluid/fluid interfaces makes shedding light on fundamental features guiding the performance of the interfaces very complicated. Therefore, the study of fluid/fluid interfaces cannot be limited to an equilibrium perspective, as there exists an undeniable necessity to face the study of the deformation and flow of these systems under the application of mechanical stresses, i.e., their interfacial rheology. This is a multidisciplinary challenge that has been evolving fast in recent years, and there is currently available a broad range of experimental and theoretical methodologies providing accurate information of the response of fluid/fluid interfaces under the application of mechanical stresses, mainly dilational and shear. This review focused on providing an updated perspective on the study of the response of fluid/fluid interfaces to dilational stresses; to open up new avenues that enable the exploitation of interfacial dilational rheology and to shed light on different problems in the interest of science and technology.This work was funded in part by MICINN under Grant PID2019-106557GB-C21 and by E.U. on the framework of the European Innovative Training Network—Marie Sklodowska-Curie Action Nano Paint (Grant Agreement 955612)

    Determination of physical emulsion stabilization mechanisms of wood hemicelluloses via rheological and interfacial characterization

    Get PDF
    Materials manufacturing industries seek efficient, economic, and sustainable compounds for stabilizing dispersed systems such as emulsions. In this study, novel, abundant biobased hydrocolloids spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX) were obtained from a forestry biorefining process and characterized as versatile stabilizers of rapeseed oil-in-water emulsions. For the first time, GGM and GX isolated by pressurized hot water extraction (PHWE) of spruce and birch saw meal, respectively, were studied in emulsions. The PHWE wood hemicelluloses—polysaccharides with relatively low molar mass—facilitated the formation of emulsions with small average droplet size and efficiently prevented droplet coalescence. GGM and GX lowered the surface tension of emulsions’ oil–water interface and increased the viscosity of the continuous phase. However, viscosity of the wood hemicellulose-based systems was low compared to that of commercial polymeric stabilizers. GGMstabilized emulsions with varying oil volume fractions were characterized in terms of their rheological properties, including large amplitude oscillation shear (LAOS) measurements, and compared to emulsions prepared with a classical small-molecular surfactant, Tween20. The physical emulsion stabilization mechanisms of GGM and GX are suggested as steric repulsion assisted by Pickering-type stabilization. Wood hemicelluloses have potential as highly promising future bioproducts for versatile industrial applications involving colloidal systems and soft materials.Peer reviewe

    A Correlation Between Velocity Profile and Molecular Weight Distribution in Sheared Entangled Polymer Solutions

    Get PDF
    In this work we attempt to answer several questions concerning the flow characteristics of entangled polymer solutions in a sliding plate shearing cell. We explore (a) how the molecular weight distribution affects the velocity profile in simple shear, (b) whether the observed shear banding is consistent with a nonmonotonic constitutive model, (c) whether the flow response and velocity profiles are different in simple shear depending on the different modes of shear. Our results provide a comparison with recent reports on a polydisperse polymer sample [Tapadia and Wang, Phys. Rev. Lett. 96, 016001 (2006); Tapadia, et al., Phys. Rev. Lett. 96, 196001 (2006)] that revealed the first evidence for inhomogeneous shear during startup in cone-plate flow geometry of a rotational rheometer. Using a highly monodisperse sample, we observed the sample to partition into two fractions with different local shear rates instead of possessing a smooth spatial variation of the local shear rate as seen for the polydisperse samples. In the stress plateau, the shear banding appears to involve various local shear rates instead of just two values. (c) 2007 The Society of Rheology
    • 

    corecore