10,694 research outputs found

    Cognitive Orthogonal Precoder for Two-tiered Networks Deployment

    Full text link
    In this work, the problem of cross-tier interference in a two-tiered (macro-cell and cognitive small-cells) network, under the complete spectrum sharing paradigm, is studied. A new orthogonal precoder transmit scheme for the small base stations, called multi-user Vandermonde-subspace frequency division multiplexing (MU-VFDM), is proposed. MU-VFDM allows several cognitive small base stations to coexist with legacy macro-cell receivers, by nulling the small- to macro-cell cross-tier interference, without any cooperation between the two tiers. This cleverly designed cascaded precoder structure, not only cancels the cross-tier interference, but avoids the co-tier interference for the small-cell network. The achievable sum-rate of the small-cell network, satisfying the interference cancelation requirements, is evaluated for perfect and imperfect channel state information at the transmitter. Simulation results for the cascaded MU-VFDM precoder show a comparable performance to that of state-of-the-art dirty paper coding technique, for the case of a dense cellular layout. Finally, a comparison between MU-VFDM and a standard complete spectrum separation strategy is proposed. Promising gains in terms of achievable sum-rate are shown for the two-tiered network w.r.t. the traditional bandwidth management approach.Comment: 11 pages, 9 figures, accepted and to appear in IEEE Journal on Selected Areas in Communications: Cognitive Radio Series, 2013. Copyright transferred to IEE

    Interference shaping constraints for underlay MIMO interference channels

    Get PDF
    In this paper, a cognitive radio (CR) scenario comprised of a secondary interference channel (IC) and a primary point-to-point link (PPL) is studied, when the former interferes the latter. In order to satisfy a given rate requirement at the PPL, typical approaches impose an interference temperature constraint (IT).When the PPL transmits multiple streams, however, the spatial structure of the interference comes into play. In such cases, we show that spatial interference shaping constraints can provide higher sum-rate performance to the IC while ensuring the required rate at the PPL. Then, we extend the interference leakage minimization algorithm (MinIL) to incorporate such constraints. An additional power control step is included in the optimization procedure to improve the sum-rate when the interference alignment (IA) problem becomes infeasible due to the additional constraint. Numerical examples are provided to illustrate the effectiveness of the spatial shaping constraint in comparison to IT when the PPL transmits multiple data streams.The research leading to these results has received funding from the Spanish Government (MICINN) under projects TEC2010-19545-C04-03 (COSIMA), CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS), and FPU Grant AP2010-2189. This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) under the grant Ut36/15-1

    A Distributed Approach to Interference Alignment in OFDM-based Two-tiered Networks

    Full text link
    In this contribution, we consider a two-tiered network and focus on the coexistence between the two tiers at physical layer. We target our efforts on a long term evolution advanced (LTE-A) orthogonal frequency division multiple access (OFDMA) macro-cell sharing the spectrum with a randomly deployed second tier of small-cells. In such networks, high levels of co-channel interference between the macro and small base stations (MBS/SBS) may largely limit the potential spectral efficiency gains provided by the frequency reuse 1. To address this issue, we propose a novel cognitive interference alignment based scheme to protect the macro-cell from the cross-tier interference, while mitigating the co-tier interference in the second tier. Remarkably, only local channel state information (CSI) and autonomous operations are required in the second tier, resulting in a completely self-organizing approach for the SBSs. The optimal precoder that maximizes the spectral efficiency of the link between each SBS and its served user equipment is found by means of a distributed one-shot strategy. Numerical findings reveal non-negligible spectral efficiency enhancements with respect to traditional time division multiple access approaches at any signal to noise (SNR) regime. Additionally, the proposed technique exhibits significant robustness to channel estimation errors, achieving remarkable results for the imperfect CSI case and yielding consistent performance enhancements to the network.Comment: 15 pages, 10 figures, accepted and to appear in IEEE Transactions on Vehicular Technology Special Section: Self-Organizing Radio Networks, 2013. Authors' final version. Copyright transferred to IEE

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Vandermonde-subspace Frequency Division Multiplexing for Two-Tiered Cognitive Radio Networks

    Full text link
    Vandermonde-subspace frequency division multiplexing (VFDM) is an overlay spectrum sharing technique for cognitive radio. VFDM makes use of a precoder based on a Vandermonde structure to transmit information over a secondary system, while keeping an orthogonal frequency division multiplexing (OFDM)-based primary system interference-free. To do so, VFDM exploits frequency selectivity and the use of cyclic prefixes by the primary system. Herein, a global view of VFDM is presented, including also practical aspects such as linear receivers and the impact of channel estimation. We show that VFDM provides a spectral efficiency increase of up to 1 bps/Hz over cognitive radio systems based on unused band detection. We also present some key design parameters for its future implementation and a feasible channel estimation protocol. Finally we show that, even when some of the theoretical assumptions are relaxed, VFDM provides non-negligible rates while protecting the primary system.Comment: 9 pages, accepted for publication in IEEE Transactions on Communication

    Cognitive Radio Dynamic Access Techniques

    Get PDF

    Benefits of improper signaling for underlay cognitive radio

    Get PDF
    In this letter we study the potential benefits of improper signaling for a secondary user (SU) in underlay cognitive radio networks. We consider a basic yet illustrative scenario in which the primary user (PU) always transmit proper Gaussian signals and has a minimum rate constraint. After parameterizing the SU transmit signal in terms of its power and circularity coefficient (which measures the degree of impropriety), we prove that the SU improves its rate by transmitting improper signals only when the ratio of the squared modulus between the SU-PU interference link and the SU direct link exceeds a given threshold. As a by-product of this analysis, we obtain the optimal circularity coefficient that must be used by the SU depending on its power budget. Some simulation results show that the SU benefits from the transmission of improper signals especially when the PU is not highly loaded.C. Lameiro and I. Santamaría have received funding from the Spanish Government (MICINN) under projects CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS), TEC2013-47141-C4-3-R (RACHEL) and FPU Grant AP2010-2189; and also from the Deutscher Akademischer Austauschdienst (DAAD) under its programm ”Research grants for doctoral candidates and young academics and scientists”. P. Schreier receives financial support from the Alfried Krupp von Bohlen und Halbach foundation, under its program ”Return of German scientists from abroad”
    • …
    corecore