6,483 research outputs found

    Amorphous Placement and Informed Diffusion for Timely Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

    Full text link
    Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance

    Amorphous Placement and Retrieval of Sensory Data in Sparse Mobile Ad-Hoc Networks

    Full text link
    Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067

    A distributed directory scheme for information access in mobile computers

    Full text link
    In this paper, we discuss the design aspects of a dynamic distributed directory scheme (DDS) to facilitate efficient and transparent access to information files in mobile environments. The proposed directory interface enables users of mobile computers to view a distributed file system on a network of computers as a globally shared file system. In order to counter some of the limitations of wireless communications, we propose improvised invalidation schemes that avoid false sharing and ensure uninterrupted usage under disconnected and low bandwidth conditions

    Enabling Personalized Composition and Adaptive Provisioning of Web Services

    Get PDF
    The proliferation of interconnected computing devices is fostering the emergence of environments where Web services made available to mobile users are a commodity. Unfortunately, inherent limitations of mobile devices still hinder the seamless access to Web services, and their use in supporting complex user activities. In this paper, we describe the design and implementation of a distributed, adaptive, and context-aware framework for personalized service composition and provisioning adapted to mobile users. Users specify their preferences by annotating existing process templates, leading to personalized service-based processes. To cater for the possibility of low bandwidth communication channels and frequent disconnections, an execution model is proposed whereby the responsibility of orchestrating personalized processes is spread across the participating services and user agents. In addition, the execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules

    Efficient location privacy-aware forwarding in opportunistic mobile networks

    Get PDF
    This paper proposes a novel fully distributed and collaborative k-anonymity protocol (LPAF) to protect users’ location information and ensure better privacy while forwarding queries/replies to/from untrusted location-based service (LBS) over opportunistic mobile networks (OppMNets. We utilize a lightweight multihop Markov-based stochastic model for location prediction to guide queries toward the LBS’s location and to reduce required resources in terms of retransmission overheads. We develop a formal analytical model and present theoretical analysis and simulation of the proposed protocol performance. We further validate our results by performing extensive simulation experiments over a pseudo realistic city map using map-based mobility models and using real-world data trace to compare LPAF to existing location privacy and benchmark protocols. We show that LPAF manages to keep higher privacy levels in terms of k-anonymity and quality of service in terms of success ratio and delay, as compared with other protocols, while maintaining lower overheads. Simulation results show that LPAF achieves up to an 11% improvement in success ratio for pseudorealistic scenarios, whereas real-world data trace experiments show up to a 24% improvement with a slight increase in the average delay

    Sketch-based Queries in Mobile GIS-Environments

    Get PDF
    Recent achievements in the field of mobile computing and wireless communication promise data retrieval anywhere and anytime. This development provided the basis to expand GIs technology to handheld devices, such as personal digital assistants (PDAs). Although traditional GIs technology is well suited for desktop workstations, it needs to be adapted in order to satisfy the requirements of users using handheld computing devices. This adaptation is necessary because the usability of traditional GISs depends on characteristics of desktop computers, such as their relatively large user interfaces (e.g., displays, keyboards, pointing devices), considerable computing resources (i.e., CPU, memory, storage, operating systems), and high bandwidth network connectivity. Small devices possess few of these characteristics, hence, requiring new and efficient methods for interaction with spatial databases. We propose a concept that supports sketch-based querying in mobile GIs environments. This concept combines newest techniques for spatial querying and mobile technologies. Such a combination is beneficial for users because it allows them to formulate queries by drawing the desired configuration with a pen on the touch-sensitive PDA screen, and consequently avoids typing complex statements in some SQL-like query language. Client-server architectures in mobile environments are characterized by low and fluctuating bandwidth, and by frequent disconnections. We discuss client-server strategies in mobile environments, suggest an adaptive client-server architecture for geomobile querying, and analyze the performance. It is shown that adaptation to the mobile environment is necessary in order to ensure efficiency of geo-mobile queries

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    corecore