55,816 research outputs found

    Reducing wildland fire hazard exploiting complex network theory. A case study analysis

    Get PDF
    We discuss a new systematic methodology to mitigate wildland fire hazard by appropriately distributing fuel breaks in space. In particular, motivated by the concept of information flow in complex networks we create a hierarchical allocation of the landscape patches that facilitate the fire propagation based on the Bonacich centrality. Reducing the fuel load in these critical patches results to lower levels of fire hazard. For illustration purposes we apply the proposed strategy to a real case of wildland fire. In particular we focus on the wildland fire that occurred in Spetses Island, Greece in 1990 and burned the one third of the forest. The efficiency of the proposed strategy is compared against the benchmark of random distribution of fuel breaks for a wide range of fuel breaks densities

    Early warning signals in plant disease outbreaks

    Get PDF
    Infectious disease outbreaks in plants threaten ecosystems, agricultural crops and food trade. Currently, several fungal diseases are affecting forests worldwide, posing a major risk to tree species, habitats and consequently ecosystem decay. Prediction and control of disease spread are difficult, mainly due to the complexity of the interaction between individual components involved. In this work, we introduce a lattice-based epidemic model coupled with a stochastic process that mimics, in a very simplified way, the interaction between the hosts and pathogen. We studied the disease spread by measuring the propagation velocity of the pathogen on the susceptible hosts. Our quantitative results indicate the occurrence of a critical transition between two stable phases: local confinement and an extended epiphytotic outbreak that depends on the density of the susceptible individuals. Quantitative predictions of epiphytotics are performed using the framework early-warning indicators for impending regime shifts, widely applied on dynamical systems. These signals forecast successfully the outcome of the critical shift between the two stable phases before the system enters the epiphytotic regime. Our study demonstrates that early-warning indicators could be useful for the prediction of forest disease epidemics through mathematical and computational models suited to more specific pathogen–host-environmental interactions. Our results may also be useful to identify a suitable planting density to slow down disease spread and in the future, design highly resilient forests

    Risk factors associated with Rift Valley fever epidemics in South Africa in 2008-11.

    Get PDF
    Rift Valley fever (RVF) is a zoonotic and vector-borne disease, mainly present in Africa, which represents a threat to human health, animal health and production. South Africa has experienced three major RVF epidemics (1950-51, 1973-75 and 2008-11). Due to data scarcity, no previous study has quantified risk factors associated with RVF epidemics in animals in South Africa. Using the 2008-11 epidemic datasets, a retrospective longitudinal study was conducted to identify and quantify spatial and temporal environmental factors associated with RVF incidence. Cox regressions with a Besag model to account for the spatial effects were fitted to the data. Coefficients were estimated by Bayesian inference using integrated nested Laplace approximation. An increase in vegetation density was the most important risk factor until 2010. In 2010, increased temperature was the major risk factor. In 2011, after the large 2010 epidemic wave, these associations were reversed, potentially confounded by immunity in animals, probably resulting from earlier infection and vaccination. Both vegetation density and temperature should be considered together in the development of risk management strategies. However, the crucial need for improved access to data on population at risk, animal movements and vaccine use is highlighted to improve model predictions

    Complex network statistics to the design of fire breaks for the control of fire spreading

    Get PDF
    A computational approach for identifying efficient fuel breaks partitions for the containment of fire incidents in forests is proposed. The approach is based on the complex networks statistics, namely the centrality measures and cellular automata modeling. The efficiency of various centrality statistics, such as betweenness, closeness, Bonacich and eigenvalue centrality to select fuel breaks partitions vs. the random-based distribution is demonstrated. Two examples of increasing complexity are considered: (a) an artificial forest of randomly distributed density of vegetation, and (b) a patch from the area of Vesuvio, National Park of Campania, Italy. Both cases assume flat terrain and single type of vegetation. Simulation results over an ensemble of lattice realizations and runs show that the proposed approach appears very promising as it produces statistically significant better outcomes when compared to the random distribution approach

    Combining local- and large-scale models to predict the distributions of invasive plant species

    Get PDF
    Habitat-distribution models are increasingly used to predict the potential distributions of invasive species and to inform monitoring. However, these models assume that species are in equilibrium with the environment, which is clearly not true for most invasive species. Although this assumption is frequently acknowledged, solutions have not been adequately addressed. There are several potential methods for improving habitat-distribution models. Models that require only presence data may be more effective for invasive species, but this assumption has rarely been tested. In addition, combining modeling types to form ‘ensemble’ models may improve the accuracy of predictions. However, even with these improvements, models developed for recently invaded areas are greatly influenced by the current distributions of species and thus reflect near- rather than long-term potential for invasion. Larger scale models from species’ native and invaded ranges may better reflect long-term invasion potential, but they lack finer scale resolution. We compared logistic regression (which uses presence/absence data) and two presence-only methods for modeling the potential distributions of three invasive plant species on the Olympic Peninsula in Washington State, USA. We then combined the three methods to create ensemble models. We also developed climate-envelope models for the same species based on larger scale distributions and combined models from multiple scales to create an index of near- and long-term invasion risk to inform monitoring in Olympic National Park (ONP). Neither presence-only nor ensemble models were more accurate than logistic regression for any of the species. Larger scale models predicted much greater areas at risk of invasion. Our index of near- and long-term invasion risk indicates that \u3c4% of ONP is at high near-term risk of invasion while 67-99% of the Park is at moderate or high long-term risk of invasion. We demonstrate how modeling results can be used to guide the design of monitoring protocols and monitoring results can in turn be used to refine models. We propose that by using models from multiple scales to predict invasion risk and by explicitly linking model development to monitoring, it may be possible to overcome some of the limitations of habitat-distribution models

    Modelling the distribution of the invasive Roesel’s bushcricket (Metrioptera roeselii) in a fragmented landscape

    Get PDF
    The development of conservation strategies to mitigate the impact of invasive species requires knowledge of the species ecology and distribution. This is, however, often lacking as collecting biological data may be both time-consuming and resource intensive. Species distribution models can offer a solution to this dilemma by analysing the species-environment relationship with help of Geographic information systems (GIS). In this study, we model the distribution of the non-native bush-cricket Metrioptera roeselii in the agricultural landscape in mid-Sweden where the species has been rapidly expanding in its range since the 1990s. We extract ecologically relevant landscape variables from Swedish CORINE land-cover maps and use species presence-absence data from large-scale surveys to construct a species distribution model (SDM). The aim of the study is to increase the knowledge of the species range expansion pattern by examining how its distribution is affected by landscape composition and structure, and to evaluate SDM performance at two different spatial scales. We found that models including data on a scale of 1 × 1 km were able to explain more of the variation in species distribution than those on the local scale (10 m buffer on each side of surveyed road). The amount of grassland in the landscape, estimated from the area of arable land, pasture and rural settlements, was a good predictor of the presence of the species on both scales. The measurements of landscape structure – linear elements and fragmentation - gave ambivalent results which differed from previous small scaled studies on species dispersal behaviour and occupancy patterns. The models had good predictive ability and showed that areas dominated by agricultural fields and their associated grassland edges have a high probability being colonised by the species. Our study identified important landscape variables that explain the distribution of M. roeselii in Mid-Sweden that may also be important to other range expanding orthopteran species. This work will serve as a foundation for future analyses of species spread and ecological processes during range expansion

    Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling

    Get PDF
    Large-scale hydrological modelling has become increasingly wide-spread during the last decade. An annual workshop series on large-scale hydrological modelling has provided, since 1997, a forum to the German-speaking community for discussing recent developments and achievements in this research area. In this paper we present the findings from the 2007 workshop which focused on advances and visions in large-scale hydrological modelling. We identify the state of the art, difficulties and research perspectives with respect to the themes "sensitivity of model results", "integrated modelling" and "coupling of processes in hydrosphere, atmosphere and biosphere". Some achievements in large-scale hydrological modelling during the last ten years are presented together with a selection of remaining challenges for the future

    Spatial and temporal hot spots of Aedes albopictus abundance inside and outside a South European metropolitan area

    Get PDF
    Aedes albopictus is a tropical invasive species which in the last decades spread worldwide, also colonizing temperate regions of Europe and US, where it has become a public health concern due to its ability to transmit exotic arboviruses, as well as severe nuisance problems due to its aggressive daytime outdoor biting behaviour. While several studies have been carried out in order to predict the potential limits of the species expansions based on eco-climatic parameters, few studies have so far focused on the specific effects of these variables in shaping its micro-geographic abundance and dynamics. The present study investigated eco-climatic factors affecting Ae. albopictus abundance and dynamics in metropolitan and sub-urban/rural sites in Rome (Italy), which was colonized in 1997 and is nowadays one of the most infested metropolitan areas in Southern Europe. To this aim, longitudinal adult monitoring was carried out along a 70 km-transect across and beyond the most urbanized and densely populated metropolitan area. Two fine scale spatiotemporal datasets (one with reference to a 20m circular buffer around sticky traps used to collect mosquitoes and the second to a 300m circular buffer within each sampling site) were exploited to analyze the effect of climatic and socio-environmental variables on Ae. albopictus abundance and dynamics along the transect. Results showed an association between highly anthropized habitats and high adult abundance both in metropolitan and sub-urban/ rural areas, with “small green islands” corresponding to hot spots of abundance in the metropolitan areas only, and a bimodal seasonal dynamics with a second peak of abundance in autumn, due to heavy rains occurring in the preceding weeks in association with permissive temperatures. The results provide useful indications to prioritize public mosquito control measures in temperate urban areas where nuisance, human-mosquito contact and risk of local arbovirus transmission are likely higher, and highlight potential public health risks also after the summer months typically associated with high mosquito densities

    Modelling tools to predict potential distribution of forest species : using Pico Island and the Azores as study case

    Get PDF
    Tese de Doutoramento, Biologia, 16 de novembro de 2018, Universidade dos Açores.Os modelos de distribuição de espécies (SDMs) têm sido aplicados em diferentes áreas da ecologia, nomeadamente para modelar a distribuição potencial de espécies invasoras, para avaliar espécies prioritárias no âmbito da conservação e para apoiar o planeamento florestal. Um SDM é uma descrição matemática da distribuição de uma espécie no espaço ambiental, a qual pode ser utilizada para prever a distribuição da espécie no espaço geográfico. O avanço ao nível da capacidade computacional disponibilizou uma diversidade de métodos estatísticos, que anteriormente não era possível utilizar. Esta diversidade de métodos reflete-se num número crescente de publicações direcionadas ao estudo e aplicação dos SDMs e também numa variedade crescente de métodos de modelação. Nos Açores, a abundância crescente de dados corológicos, a diversidade geomorfológica do arquipélago e os diferentes padrões espaciais que é possível encontrar em diferentes ilhas e em diferentes espécies, contribuem para que o arquipélago seja um bom modelo para a comparação de diferentes abordagens de modelação, bem como para testar possíveis constrangimentos inerentes ao processo de modelação. As perguntas de investigação a que pretendemos responder nesta tese foram as seguintes: (i) As abordagens de modelação, baseadas em diferentes fundamentos teóricos, originam resultados semelhantes, ao nível da distribuição potencial das espécies florestais estudadas? (ii) Existe alguma diferença relevante, entre o cálculo de Modelos Lineares Generalizados (GLMs) usando métodos de máxima verossimilhança ou métodos bayesianos? (iii) Existe alguma vantagem, no uso de um campo aleatório relativo à estrutura espacial dos dados, em comparação com os modelos que incluem apenas os efeitos fixos das variáveis ambientais? (iv) As diferentes abordagens de modelação originam resultados consistentes, em particular quando o número de variáveis ambientais utilizadas na modelação é reduzido? (v) As diferentes técnicas de modelação são afetadas de um modo relevante pela dimensão da amostra, pelo tipo de distribuição da espécie e pelas alterações no uso do solo? Para responder a estas questões, foram desenvolvidos três exercícios de modelação: (i) Uma comparação da Análise Fatorial do Nicho Ecológico (ENFA) e da modelação baseada na Máxima Entropia (MaxEnt), utilizando dados relativos à presença de três espécies (Pittosporum undulatum, Acacia melanoxylon e Morella faya) em três ilhas (Pico, Terceira e São Miguel), e incluindo o efeito da redução da dimensão da amostra; (ii) A comparação de modelos com efeitos fixos ou mistos, utilizando a plataforma R para o cálculo de GLMs e da aproximação de Laplace (INLA), permitindo o cálculo da estrutura espacial dos dados (função de covariância de Matérn), baseada em dados de duas ilhas (Pico e São Miguel) para duas espécies (P. undulatum e M. faya), e incluindo o efeito da redução da dimensão da amostra; e (iii) A comparação de GLMs e de uma seleção de algoritmos de autoaprendizagem (Machine Learning), usados para modelar as possíveis alterações nas áreas de distribuição de P. undulatum, A. melanoxylon e M. faya nas três ilhas, resultantes das alterações climáticas previstas para 2100. Em relação ao primeiro exercício, ambas as abordagens originaram cenários semelhantes, particularmente quando a quantidade de informação explicada pela ENFA era elevada; os resultados da modelação foram afetados pela redução do tamanho da amostra; os modelos com melhor capacidade de previsão incluíam um conjunto variado de variáveis ambientais (topográficas, climáticas e de uso do solo); e os modelos eram afetados pela transferência para um novo habitat (i.e. ilha). Os resultados do segundo exercício de modelação indicaram que os GLMs, calculados através de métodos de máxima verossimilhança ou métodos bayesianos originaram resultados similares, mesmo nos casos em que a dimensão da amostra era reduzida; e que a adição de um campo aleatório aumentou o ajustamento dos modelos, particularmente para a árvore menos abundante, M. faya, embora a estrutura do campo aleatório fosse claramente afetada pela dimensão da amostra. O terceiro exercício de modelação revelou que existem várias limitações quando se modela o efeito das alterações climáticas na distribuição das espécies, uma vez que os melhores modelos incluíram variáveis topográficas, demonstrando que a modelação baseada somente no clima poderá não ser fiável; verificou-se igualmente que o ajuste dos modelos variava de forma relevante entre as diferentes abordagens de modelação, e que o algoritmo Random Forest apresentou, em geral, os melhores resultados. De uma forma geral, os resultados desta investigação poderão ser aplicados como forma de apoio à gestão da floresta açoriana. Poderão ser replicados em outros sistemas insulares e noutras regiões florestais, não somente em projetos direcionados para a ecologia das espécies florestais, mas também em questões de investigação relacionadas com a previsão do sucesso e expansão das plantas invasoras, a deteção de áreas adequadas para projetos de restauro, a modelação baseada em dados de deteção remota e a modelação do efeito potencial das alterações climáticas.ABSTRACT: Species distribution models (SDMs) have been used in different areas within ecology, namely to model the potential spread of invasive species, to evaluate and manage priority species for conservation and to support forest management. An SDM is a mathematical description of the species distribution in the environmental space that can be used to predict the distribution of the species in the geographic space. The advances in computational capabilities have provided increasingly greater and more intensive statistical algorithms than was previously possible, as reflected by the increasing number of publications addressing SDMs and also the growing variety of modelling approaches. In the Azores, the growing abundance of the species distribution data, the diversity on island size and morphology, and the different spatial patterns that are possible among islands and species, make the archipelago a good model for the comparison of different modelling approaches and to test possible modelling constraints. Overall, the results of this research can be expanded to support Azorean forestry management, and could be replicated in other island systems and forest regions, not only in projects addressing the ecology of particular forest species, but also when handling research questions related with the prediction of plant invader success and expansion, the detection of areas potentially suited for restoration projects, modelling based on remote sense data, and modelling of the potential effect of climate change
    corecore