300 research outputs found

    Reliable load-balancing routing for resource-constrained wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are energy and resource constrained. Energy limitations make it advantageous to balance radio transmissions across multiple sensor nodes. Thus, load balanced routing is highly desirable and has motivated a significant volume of research. Multihop sensor network architecture can also provide greater coverage, but requires a highly reliable and adaptive routing scheme to accommodate frequent topology changes. Current reliability-oriented protocols degrade energy efficiency and increase network latency. This thesis develops and evaluates a novel solution to provide energy-efficient routing while enhancing packet delivery reliability. This solution, a reliable load-balancing routing (RLBR), makes four contributions in the area of reliability, resiliency and load balancing in support of the primary objective of network lifetime maximisation. The results are captured using real world testbeds as well as simulations. The first contribution uses sensor node emulation, at the instruction cycle level, to characterise the additional processing and computation overhead required by the routing scheme. The second contribution is based on real world testbeds which comprises two different TinyOS-enabled senor platforms under different scenarios. The third contribution extends and evaluates RLBR using large-scale simulations. It is shown that RLBR consumes less energy while reducing topology repair latency and supports various aggregation weights by redistributing packet relaying loads. It also shows a balanced energy usage and a significant lifetime gain. Finally, the forth contribution is a novel variable transmission power control scheme which is created based on the experience gained from prior practical and simulated studies. This power control scheme operates at the data link layer to dynamically reduce unnecessarily high transmission power while maintaining acceptable link reliability

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Wireless Mesh Networks to Support Video Surveillance: Architecture, Protocol, and Implementation Issues

    Get PDF
    Current video-surveillance systems typically consist of many video sources distributed over a wide area, transmitting live video streams to a central location for processing and monitoring. The target of this paper is to present an experience of implementation of a large-scale video-surveillance system based on a wireless mesh network infrastructure, discussing architecture, protocol, and implementation issues. More specifically, the paper proposes an architecture for a video-surveillance system, and mainly centers its focus on the routing protocol to be used in the wireless mesh network, evaluating its impact on performance at the receiver side. A wireless mesh network was chosen to support a video-surveillance application in order to reduce the overall system costs and increase scalability and performance. The paper analyzes the performance of the network in order to choose design parameters that will achieve the best trade-off between video encoding quality and the network traffic generated

    ModiïŹed Adhoc on Demand Routing Protocol in Mobile Ad hoc Network

    Get PDF
    In Ad hoc network there no any central infrastructure but it allows mobile devices to establish communication path.Since there is no central infrastructure and mobile devices are moving randomly ,gives rise to various kinds of problems, such as security and routing. here we are consider problem of routing. Routing is one of the key issues in MANET because of highly dynamic and distributed nature of nodes. Especially energy efficient routing is most important because all the nodes are battery powered. Failure of one node may affect the entire network. If a node runs out of energy the probability of network partition- ing will be increased. Since every mobile node has limited power supply, energy depletion is become one of the main threats to the lifetime of the ad hoc network. So routing in MANET should be in such a way that it will use the remaining battery power in an efficient way to increase the life time of the network. In this thesis, we have proposedModified Adhoc on Demand Routing (MAODV) which will efficiently utilize the battery power of the mobile nodes in such a way that the network will get more lifetime. Multiple paths are used to send data and load balancing approach is used to avoid over utilized nodes. Load balancing is done by selecting a route which contains energy rich nodes

    Performance and energy efficiency in wireless self-organized networks

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Mobility in wireless sensor networks : advantages, limitations and effects

    Get PDF
    The primary aim of this thesis is to study the benefits and limitations of using a mobile base station for data gathering in wireless sensor networks. The case of a single mobile base station and mobile relays are considered. A cluster-based algorithm to determine the trajectory of a mobile base station for data gathering within a specified delay time is presented. The proposed algorithm aims for an equal number of sensors in each cluster in order to achieve load balance among the cluster heads. It is shown that there is a tradeoff between data-gathering delay and balancing energy consumption among sensor nodes. An analytical solution to the problem is provided in terms of the speed of the mobile base station. Simulation is performed to evaluate the performance of the proposed algorithm against the static case and to evaluate the distribution of energy consumption among the cluster heads. It is demonstrated that the use of clustering with a mobile base station can improve the network lifetime and that the proposed algorithm balances energy consumption among cluster heads. The effect of the base station velocity on the number of packet losses is studied and highlights the limitation of using a mobile base station for a large-scale network. We consider a scenario where a number of mobile relays roam through the sensing field and have limited energy resources that cannot reach each other directly. A routing scheme based on the multipath protocol is proposed, and explores how the number of paths and spread of neighbour nodes used by the mobile relays to communicate affects the network overhead. We introduce the idea of allowing the source mobile relay to cache multiple routes to the destination through its neighbour nodes in order to provide redundant paths to destination. An analytical model of network overhead is developed and verified by simulation. It is shown that the desirable number of routes is dependent on the velocity of the mobile relays. In most cases the network overhead is minimized when the source mobile relay caches six paths via appropriately distributed neighbours at the destination. A new technique for estimating routing-path hop count is also proposed. An analytical model is provided to estimate the hop count between source-destination pairs in a wireless network with an arbitrary node degree when the network nodes are uniformly distributed in the sensing field. The proposed model is a significant improvement over existing models, which do not correctly address the low-node density situation

    Portable mud remover

    Get PDF
    Basically, the only way to remove mud is by using shovel. The process of removing mud usually need us to shovel out the mud, put it into buckets and carry it outside and by using a garden sprayer or hose to wash away mud from hard surfaces [1]. This is because there are no specific tools or products to remove the mud in our industries. In that case, our group had come up with an idea to design a “Portable Mud Remover” which is inspired from a lawnmower and vacuum as shown in Figure 10.1. The idea of using concept of lawnmower is because to make is the product is portable and easy to handling. The smallest types of lawnmower are pushed by a human user and are suitable for small space. The problem occurs for the pool vacuum is that the product is not suitable to suck the mud because it is not designed for a heavy duty work
    • 

    corecore