274 research outputs found

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    Ionosphere Monitoring with Remote Sensing

    Get PDF
    This book focuses on the characterization of the physical properties of the Earth’s ionosphere, contributing to unveiling the nature of several processes responsible for a plethora of space weather-related phenomena taking place in a wide range of spatial and temporal scales. This is made possible by the exploitation of a huge amount of high-quality data derived from both remote sensing and in situ facilities such as ionosondes, radars, satellites and Global Navigation Satellite Systems receivers

    Atmospheric and ionospheric coupling phenomena associated with large earthquakes

    Get PDF
    This paper explores multi-instrument space-borne observations in order to validate physical concepts of Lithosphere-AtmosphereIonosphere Coupling (LAIC) in relation to a selection of major seismic events. In this study we apply some validated techniques to observations in order to identify atmospheric and ionospheric precursors associated with some of recent most destructive earthquakes: M8.6 of March 28, 2005 and M8.5 of Sept. 12, 2007 in Sumatra, and M7.9 of May 12, 2008 in Wenchuan, China. New investigations are also presented concerning these three earthquakes and for the M7.2 of March 2008 in the Xinjiang-Xizang border region, China (the Yutian earthquake). It concerns the ionospheric density, the Global Ionospheric Maps (GIM) of the Total Electron Content (TEC), the Thermal InfraRed (TIR) anomalies, and the Outgoing Longwave Radiation (OLR) data. It is shown that all these anomalies are identified as short-term precursors, which can be explained by the LAIC concept proposed in [S. Pulinets, D. Ouzounov, J. Asian Earth Sci. 41, 371 (2011)]

    Summary of Sessions: Ionosphere - Thermosphere - Mesosphere Working Group

    Get PDF
    The topics covered by the sessions under the working group on Ionosphere-Thermosphere-Mesosphere dealt with various aspects of the response of the ionosphere-thermosphere coupled system and the middle atmosphere to solar variability. There were four plenary talks related to the theme of this working group, thirteen oral presentations in three sessions and six poster presentations. A number of issues related to effects of solar variability on the ionosphere-thermosphere, observed using satellite and ground-based data including ground magnetometer observations, radio beacon studies of equatorial spread F, and modeling of some of these effects, were discussed. Radar observations of the mesosphere-lower thermosphere region and a future mission to study the coupling of thunderstorm processes to this region, the ionosphere, and magnetosphere were also presented

    Local scale structures in earth's thermospheric winds and their consequences for wind driven transport

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2015In the traditional picture of Earth's upper thermosphere (~190-300 km), it is widely presumed that its convective stability and enormous kinematic viscosity attenuate wind gradients, and hence smooth out any structure present in the wind over scale size of several hundreds of kilometers. However, several independent experimental studies have shown that observed upper thermospheric wind fields at high latitudes contain stronger than expected local-scale spatial structures. The motivation of this dissertation is to investigate how the resulting local-scale gradients would distort neutral air masses and complicate thermospheric wind transport. To achieve this goal, we examined the behavior of a simple parameter that we refer to as the "distortion gradient". It incorporates all of the wind field's departures from uniformity, and is thus capable of representing all resulting contributions to the distortion or mixing of air masses. Climatological analysis of the distortion gradient using 2010, 2011, and 2012 wind data from the All-sky Scanning Doppler Imager (SDI) located at Poker Flat (65.12N, 147.47W) revealed the diurnal and seasonal trends in distortion of thermospheric masses. Distortion was observed to be dependent on geomagnetic activity and orientation of the interplanetary magnetic field. To understand the time-cumulative influence of these local-scale non-uniformities on thermospheric wind driven transport, time-resolved two-dimensional maps of the thermospheric vector wind fields were used to infer forward and backward air parcel trajectories. Tracing air parcel trajectories through a given geographic location indicates where they came from previously, and where they will go in the future. Results show that wind driven transport is very sensitive to small-scale details of the wind field. Any local-scale spatial wind gradients can significantly complicate air parcel trajectories. Transport of thermospheric neutral species in the presence of the local-scale wind gradients that we observed was found to be far more complicated than what current models typically predict. To validate these findings, we cross-compared the upper thermospheric neutral winds inferred from a narrow field of view Fabry-Perot interferometer with winds measured by our all-sky SDI. A high degree of correlation was present between their measurements. This cross-validation study suggests the presence of small-scale short-lived, and previously unobserved wind features in the upper thermosphere, with typical length scales less than ~40 km. The spatially and temporally localized wind features implied by this study represent a new and unexplored regime of dynamics in the thermosphere.Chapter 1: Introduction to Earth's upper atmosphere -- Chapter 2: Dynamics of Earth's upper atmosphere -- Chapter 3: Distortion of thermospheric air masses by horizontal neutralwinds over Poker Flat measured using an all-sky scanning doppler imager -- Chapter 4: Tracing trajectories of air parcels transported through spatially resolved horizontal neutralwind fields observed in the thermosphere above Alaska -- Chapter 5: First ever cross-comparison of thermospheric wind measured by narrow and wide field optical doppler spectroscopy -- Chapter 6: Conclusions -- Appendices

    Continued reduction and analysis of data from the Dynamics Explorer Plasma Wave Instrument

    Get PDF
    The plasma wave instrument on the Dynamics Explorer 1 spacecraft provided measurements of the electric and magnetic components of plasma waves in the Earth's magnetosphere. Four receiver systems processed signals from five antennas. Sixty-seven theses, scientific papers and reports were prepared from the data generated. Data processing activities and techniques used to analyze the data are described and highlights of discoveries made and research undertaken are tabulated

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    An investigation of cusp latitude magnetosphere-ionosphere physics: A time series analysis approach

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1997The shocked solar wind plasma of the magnetosheath has direct access to the Earth's high-latitude ionosphere and upper atmosphere only through the magnetospheric cusps. The interaction of solar and terrestrial plasmas and fields in these regions has made them an obvious choice for the study of coupling processes in the geospace environment. Some of the information regarding these processes is manifest in the transmission and generation of wave energy, a portion of which can be detected by ground-based magnetometers. In the present day, records of the magnetic field are stored in a digital format; therefore, some form of signal processing is required to extract meaningful physical information from them. This thesis is aimed at the physical characterization of the cusp region through the careful application of digital time series analysis techniques to ground-based magnetometer records. It is demonstrated that judicious application of signal processing techniques can yield new, physically meaningful results from ground-based magnetometer records, and aid in the understanding of disparate reports from groups using different analysis techniques on like data. Characterization of the cusp region is couched in terms of three specific, open problems of the physics of magnetic perturbations in the cusp: (1) the coherence of localized pulsations, (2) the spatiotemporal nature of the cusp magnetic spectrum, and (3) the ground-based magnetic determination of the separatrix. The first problem is addressed by assuming that localized pulsations are coherent only over some finite spatial extent. A statistical measure of interstation coherence is developed to estimate an upper bound of O{\cal O}(200 km) for the coherence length of this class of pulsations. The second problem is addressed by examining the ultra low frequency polarization spectrum. An information theoretic measure is established as a quantitative means of discriminating the spatial passage of the cusp by ground-based magnetic means. This procedure replaces previous determinations which were made "by-eye." Finally, separatrix identification is addressed by applying the statistical interstation coherence measure to pulsations presumably representative of a magnetic field line resonance. The analysis indicates that a determination is not possible to a resolution better than O{\cal O}3(300 km)

    OGO program summary

    Get PDF
    An overview of the OGO program is presented. Brief descriptions of the six OGO spacecraft, and the experiments on each are included

    An Investigation of magnetic storm effects on total electron content over South Africa for selected periods in solar cycles 23 and 24

    Get PDF
    >Magister Scientiae - MScThe development of regional ionospheric Total Electron Content (TEC) models has contributed to understanding the behavior of ionospheric parameters and the coupling of the ionosphere to space weather activities on both local and global scales. In the past several decades, the International Global Navigation Satellite Systems Service (GNSS) networks of dual frequency receiver data have been applied to develop global and regional models of ionospheric TEC. These models were mainly developed in the Northern Hemisphere where there are dense network of ground based GPS receivers for regional data coverage. Such efforts have been historically rare over the African region, and have only recently begun. This thesis reports the investigation of the effect of mid-latitude magnetic storms on TEC over South Africa for portions of Solar Cycles 23 and 24. The MAGIC package was used to estimate TEC over South Africa during Post Solar Maximum, Solar Minimum, and Post Solar Minimum periods. It is found that TEC is largely determined by the diurnal cycle of solar forcing and subsequent relaxation, but effects due to storms can be determine
    • …
    corecore