1,645 research outputs found

    Metrics that matter for assessing the ocean biological carbon pump

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, (2020): 201918114, doi: 10.1073/pnas.1918114117.The biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans’ interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation’s Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the “Martin curve.” We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.We thank the many scientists whose ideas and contributions over the years are the foundation of this paper. This includes A. Martin, who led the organization of the BIARRITZ group (now JETZON) workshop in July 2019, discussions at which helped to motivate this article. We thank D. Karl for pointing us in the right direction for this paper format at PNAS and two thoughtful reviewers who through their comments helped to improve this manuscript. Support for writing this piece is acknowledged from several sources, including the Woods Hole Oceanographic Institution’s Ocean Twilight Zone project (K.O.B.); NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program (K.O.B. and D.A.S.). E.E.B. was supported by a postdoctoral fellowship through the Ocean Frontier Institute at Dalhousie University. P.W.B. was supported by the Australian Research Council through a Laureate (FL160100131)

    230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille UniversitĂ©, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791

    How Data Set Characteristics Influence Ocean Carbon Export Models

    Get PDF
    Ocean biological processes mediate the transport of roughly 10 petagrams of carbon from the surface to the deep ocean each year and thus play an important role in the global carbon cycle. Even so, the globally integrated rate of carbon export out of the surface ocean remains highly uncertain. Quantifying the processes underlying this biological carbon export requires a synthesis between model predictions and available observations of particulate organic carbon (POC) flux; yet the scale dissimilarities between models and observations make this synthesis difficult. Here we compare carbon export predictions from a mechanistic model with observations of POC fluxes from several data sets compiled from the literature spanning different space, time, and depth scales as well as using different observational methodologies. We optimize model parameters to provide the best match between model‐predicted and observed POC fluxes, explicitly accounting for sources of error associated with each data set. Model‐predicted globally integrated values of POC flux at the base of the euphotic layer range from 3.8 to 5.5 Pg C/year, depending on the data set used to optimize the model. Modeled carbon export pathways also vary depending on the data set used to optimize the model, as well as the satellite net primary production data product used to drive the model. These findings highlight the importance of collecting field data that average over the substantial natural temporal and spatial variability in carbon export fluxes, and advancing satellite algorithms for ocean net primary production, in order to improve predictions of biological carbon export

    Impact of particle flux on the vertical distribution and diversity of size-fractionated prokaryotic communities in two East Antarctic polynyas

    Get PDF
    Antarctic polynyas are highly productive open water areas surrounded by ice where extensive phytoplankton blooms occur, but little is known about how these surface blooms influence carbon fluxes and prokaryotic communities from deeper waters. By sequencing the 16S rRNA gene, we explored the vertical connectivity of the prokaryotic assemblages associated with particles of three different sizes in two polynyas with different surface productivity, and we linked it to the magnitude of the particle export fluxes measured using thorium-234 (234Th) as particle tracer. Between the sunlit and the mesopelagic layers (700 m depth), we observed compositional changes in the prokaryotic communities associated with the three size-fractions, which were mostly dominated by Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. Interestingly, the vertical differences between bacterial communities attached to the largest particles decreased with increasing 234Th export fluxes, indicating a more intense downward transport of surface prokaryotes in the most productive polynya. This was accompanied by a higher proportion of surface prokaryotic taxa detected in deep particle-attached microbial communities in the station with the highest 234Th export flux. Our results support recent studies evidencing links between surface productivity and deep prokaryotic communities and provide the first evidence of sinking particles acting as vectors of microbial diversity to depth in Antarctic polynyas, highlighting the direct influence of particle export in shaping the prokaryotic communities of mesopelagic waters

    Lithogenic particle transport trajectories on the Northwest Atlantic Margin

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(1), (2021): e2020JC016802, https://doi.org/10.1029/2020JC016802.The neodymium isotopic composition of the detrital (lithogenic) fraction (ΔNd‐detrital) of surface sediments and sinking particles was examined to constrain transport trajectories associated with hemipelagic sedimentation on the northwest Atlantic margin. The provenance of resuspended sediments and modes of lateral transport in the water column were of particular interest given the energetic hydrodynamic regime that sustains bottom and intermediate nepheloid layers over the margin. A large across‐margin gradient of ∌5 ΔNd units was observed for surface sediments, implying strong contrasts in sediment provenance, with ΔNd‐detrital values on the lower slope similar to those of “upstream regions” (Scotian margin) under the influence of the Deep Western Boundary Current (DWBC). Sinking particles collected at three depths at a site (total water depth, ∌3,000 m) on the New England margin within the core of the DWBC exhibited a similarly large range in ΔNd‐detrital values. The ΔNd‐detrital values of particles intercepted at intermediate water depths (1,000 and 2,000 m) were similar to each other but significantly higher than those at 3,000 m (∌50 m above the seafloor). These observations suggest that lithogenic material accumulating in the upper two traps was primarily advected in intermediate nepheloid layers emanating from the adjacent shelf, while that at 3,000 m is strongly influenced by sediment resuspension and along‐margin, southward lateral transport within the bottom nepheloid layer via entrainment in the DWBC. Our results highlight the importance of both along‐ and across‐margin sediment transport as vectors for lithogenic material and associated organic carbon transport.This research was funded by the NSF Ocean Sciences Chemical Oceanography program (OCE‐0425677; OCE‐0851350). JH was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2020R1A2C1008378).2021-06-0

    Variations In the Abundance and Distribution of Aggregates In the Ross Sea, Antarctica

    Get PDF
    The vertical distribution and temporal changes in aggregate abundance and sizes were measured in the Ross Sea, Antarctica between 2002 and 2005 to acquire a more complete understanding of the mechanisms and rates of carbon export from the euphotic layer. Aggregate abundance was determined by photographic techniques, and water column parameters (temperature, salinity, fluorescence, transmissometry) were assessed from CTD profiles. During the first three years the numbers of aggregates increased seasonally, being much more abundant within the upper 200 m in late summer than in early summer from 50 to 100 m (12.5 L–1 in early summer vs. 42.9 L–1 in late summer). In Year 4 aggregate numbers were substantially greater than in other years, and average aggregate abundance was maximal in early rather than late summer (177 vs. 84.5 L–1), which we attributed to the maximum biomass and aggregate formation being reached earlier than in other years. The contribution of aggregate particulate organic carbon to the total particulate carbon pool was estimated to be 20%. Ghost colonies, collapsed colonies of the haptophyte Phaeocystis antarctica, were observed during late summer in Year 4, with maximum numbers in the upper 100 m of ca. 40 L–1. Aggregate abundance, particulate organic carbon and ghost colonies all decreased exponentially with depth, and the rate of ghost colony disappearance suggested that their contribution to sedimentary input was small at the time of sampling. Bottom nepheloid layers were commonly observed in late summer in both transmissometer and aggregate data. Late summer nepheloid layers had fluorescent material within them, suggesting that the particles were likely generated during the same growing season. Longer studies encompassing the entire production season would be useful in further elucidating the role of these aggregates in the carbon cycle of these regions

    Revisiting five decades of Th-234 data: a comprehensive global oceanic compilation

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ceballos-Romero, E., Buesseler, K. O., & Villa-Alfageme, M. Revisiting five decades of Th-234 data: a comprehensive global oceanic compilation. Earth System Science Data, 14(6), (2022): 2639–2679, https://doi.org/10.5194/essd-14-2639-2022.We present here a global oceanic compilation of 234Th measurements that collects results from researchers and laboratories over a period exceeding 50 years. The origin of the 234Th sampling in the ocean goes back to 1967, when Bhat et al. (1969) initially studied 234Th distribution relative to its parent 238U in the Indian Ocean. However, it was the seminal work of Buesseler et al. (1992) – which proposed an empirical method to estimate export fluxes from 234Th distributions – that drove the extensive use of the 234Th–238U radioactive pair to evaluate the organic carbon export out of the surface ocean by means of the biological carbon pump. Since then, a large number of 234Th depth profiles have been collected using a variety of sampling instruments and strategies that have changed during the past 50 years. The present compilation is made of a total 223 data sets: 214 from studies published in either articles in refereed journals, PhD theses, or repositories, as well as 9 unpublished data sets. The data were compiled from over 5000 locations spanning all the oceans for total 234Th profiles, dissolved and particulate 234Th activity concentrations (in dpm L−1), and POC:234Th ratios (in ”mol dpm−1) from both sediment traps and filtration methods. A total of 379 oceanographic expeditions and more than 56 600 234Th data points have been gathered in a single open-access, long-term, and dynamic repository. This paper introduces the dataset along with informative and descriptive graphics. Appropriate metadata have been compiled, including geographic location, date, and sample depth, among others. When available, we also include water temperature, salinity, 238U data (over 18 200 data points), and particulate organic nitrogen data. Data source and method information (including 238U and 234Th) is also detailed along with valuable information for future data analysis such as bloom stage and steady-/non-steady-state conditions at the sampling moment. The data are archived on the PANGAEA repository, with the dataset DOI https://doi.org/10.1594/PANGAEA.918125 (Ceballos-Romero et al., 2021). This provides a valuable resource to better understand and quantify how the contemporary oceanic carbon uptake functions and how it will change in future.This work was partially funded by the V Research Programme from the Universidad de Sevilla (Elena Ceballos-Romero) and EU FEDER-Junta de AndalucĂ­a funded project US-1263369 (MarĂ­a Villa-Alfageme). Ken O. Buesseler was supported in part by NSF under GEOTRACES, NASA as part of the EXPORTS program, and WHOI as part of the Ocean Twilight Zone project. MarĂ­a Villa-Alfageme and Ken O. Buesseler are also part of an IAEA Coordinated Research Project “Behaviour and effects of natural and anthropogenic radionuclides in the marine environment and their use as tracers for oceanographic studies

    Global database of ratios of particulate organic carbon to thorium-234 in the ocean: Improving estimates of the biological carbon pump

    Get PDF
    The ocean\u27s biological carbon pump (BCP) plays a major role in the global carbon cycle. A fraction of the photosynthetically fixed organic carbon produced in surface waters is exported below the sunlit layer as settling particles (e.g., marine snow). Since the seminal works on the BCP, global estimates of the global strength of the BCP have improved but large uncertainties remain (from 5 to 20 Gt C yr−1 exported below the euphotic zone or mixed-layer depth). The 234Th technique is widely used to measure the downward export of particulate organic carbon (POC). This technique has the advantage of allowing a downward flux to be determined by integrating the deficit of 234Th in the upper water column and coupling it to the POC∕234Th ratio in sinking particles. However, the factors controlling the regional, temporal, and depth variations of POC∕234Th ratios are poorly understood. We present a database of 9318 measurements of the POC∕234Th ratio in the ocean, from the surface down to \u3e5500 m, sampled on three size fractions (∌\u3e0.7 ”m, ∌1–50 ”m, ∌\u3e50 ”m), collected with in situ pumps and bottles, and also from bulk particles collected with sediment traps. The dataset is archived in the data repository PANGAEAÂź under https://doi.org/10.1594/PANGAEA.911424 (PuigcorbĂ©, 2019). The samples presented in this dataset were collected between 1989 and 2018, and the data have been obtained from published papers and open datasets available online. Unpublished data have also been included. Multiple measurements can be found in most of the open ocean provinces. However, there is an uneven distribution of the data, with some areas highly sampled (e.g., China Sea, Bermuda Atlantic Time Series station) compared to some others that are not well represented, such as the southeastern Atlantic, the south Pacific, and the south Indian oceans. Some coastal areas, although in a much smaller number, are also included in this global compilation. Globally, based on different depth horizons and climate zones, the median POC∕234Th ratios have a wide range, from 0.6 to 18 ”mol dpm−1

    Variations in the abundance and distribution of aggregates in the Ross Sea, Antarctica

    Get PDF
    The vertical distribution and temporal changes in aggregate abundance and sizes were measured in the Ross Sea, Antarctica between 2002 and 2005 to acquire a more complete understanding of the mechanisms and rates of carbon export from the euphotic layer. Aggregate abundance was determined by photographic techniques, and water column parameters (temperature, salinity, fluorescence, transmissometry) were assessed from CTD profiles. During the first three years the numbers of aggregates increased seasonally, being much more abundant within the upper 200 m in late summer than in early summer from 50 to 100 m (12.5 L–1 in early summer vs. 42.9 L–1 in late summer). In Year 4 aggregate numbers were substantially greater than in other years, and average aggregate abundance was maximal in early rather than late summer (177 vs. 84.5 L–1), which we attributed to the maximum biomass and aggregate formation being reached earlier than in other years. The contribution of aggregate particulate organic carbon to the total particulate carbon pool was estimated to be 20%. Ghost colonies, collapsed colonies of the haptophyte Phaeocystis antarctica, were observed during late summer in Year 4, with maximum numbers in the upper 100 m of ca. 40 L–1. Aggregate abundance, particulate organic carbon and ghost colonies all decreased exponentially with depth, and the rate of ghost colony disappearance suggested that their contribution to sedimentary input was small at the time of sampling. Bottom nepheloid layers were commonly observed in late summer in both transmissometer and aggregate data. Late summer nepheloid layers had fluorescent material within them, suggesting that the particles were likely generated during the same growing season. Longer studies encompassing the entire production season would be useful in further elucidating the role of these aggregates in the carbon cycle of these regions
    • 

    corecore