223 research outputs found

    FastHuman: Reconstructing High-Quality Clothed Human in Minutes

    Full text link
    We propose an approach for optimizing high-quality clothed human body shapes in minutes, using multi-view posed images. While traditional neural rendering methods struggle to disentangle geometry and appearance using only rendering loss, and are computationally intensive, our method uses a mesh-based patch warping technique to ensure multi-view photometric consistency, and sphere harmonics (SH) illumination to refine geometric details efficiently. We employ oriented point clouds' shape representation and SH shading, which significantly reduces optimization and rendering times compared to implicit methods. Our approach has demonstrated promising results on both synthetic and real-world datasets, making it an effective solution for rapidly generating high-quality human body shapes. Project page \href{https://l1346792580123.github.io/nccsfs/}{https://l1346792580123.github.io/nccsfs/}Comment: International Conference on 3D Vision, 3DV 202

    BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields

    Full text link
    Neural rendering combines ideas from classical computer graphics and machine learning to synthesize images from real-world observations. NeRF, short for Neural Radiance Fields, is a recent innovation that uses AI algorithms to create 3D objects from 2D images. By leveraging an interpolation approach, NeRF can produce new 3D reconstructed views of complicated scenes. Rather than directly restoring the whole 3D scene geometry, NeRF generates a volumetric representation called a ``radiance field,'' which is capable of creating color and density for every point within the relevant 3D space. The broad appeal and notoriety of NeRF make it imperative to examine the existing research on the topic comprehensively. While previous surveys on 3D rendering have primarily focused on traditional computer vision-based or deep learning-based approaches, only a handful of them discuss the potential of NeRF. However, such surveys have predominantly focused on NeRF's early contributions and have not explored its full potential. NeRF is a relatively new technique continuously being investigated for its capabilities and limitations. This survey reviews recent advances in NeRF and categorizes them according to their architectural designs, especially in the field of novel view synthesis.Comment: 22 page, 1 figure, 5 tabl

    Deep learning for accelerated magnetic resonance imaging

    Get PDF
    Medical imaging has aided the biggest advance in the medical domain in the last century. Whilst X-ray, CT, PET and ultrasound are a form of imaging that can be useful in particular scenarios, they each have disadvantages in cost, image quality, ease-of-use and ionising radiation. MRI is a slow imaging protocol which contributes to its high cost to run. However, MRI is a very versatile imaging protocol allowing images of varying contrast to be easily generated whilst not requiring the use of ionising radiation. If MRI can be made to be more efficient and smart, the effective cost of running MRI may be more affordable and accessible. The focus of this thesis is decreasing the acquisition time involved in MRI whilst maintaining the quality of the generated images and thus diagnosis. In particular, we focus on data-driven deep learning approaches that aid in the image reconstruction process and streamline the diagnostic process. We focus on three particular aspects of MR acquisition. Firstly, we investigate the use of motion estimation in the cine reconstruction process. Motion allows us to combine an abundance of imaging data in a learnt reconstruction model allowing acquisitions to be sped up by up to 50 times in extreme scenarios. Secondly, we investigate the possibility of using under-acquired MR data to generate smart diagnoses in the form of automated text reports. In particular, we investigate the possibility of skipping the imaging reconstruction phase altogether at inference time and instead, directly seek to generate radiological text reports for diffusion-weighted brain images in an effort to streamline the diagnostic process. Finally, we investigate the use of probabilistic modelling for MRI reconstruction without the use of fully-acquired data. In particular, we note that acquiring fully-acquired reference images in MRI can be difficult and nonetheless may still contain undesired artefacts that lead to degradation of the dataset and thus the training process. In this chapter, we investigate the possibility of performing reconstruction without fully-acquired references and furthermore discuss the possibility of generating higher quality outputs than that of the fully-acquired references.Open Acces

    Large deformation diffeomorphic registration of diffusion-weighted imaging data

    Get PDF
    Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. It can be used to build a reference anatomy for investigating structural variation or tracking changes in white matter. Unlike traditional scalar image registration where spatial alignment is the only focus, registration of DWI data requires both spatial alignment of structures and reorientation of local signal profiles. As such, DWI registration is much more complex and challenging than scalar image registration. Although a variety of algorithms has been proposed to tackle the problem, most of them are restricted by the zdiffusion model used for registration, making it difficult to fit to the registered data a different model. In this paper we describe a method that allows any diffusion model to be fitted after registration for subsequent multifaceted analysis. This is achieved by directly aligning DWI data using a large deformation diffeomorphic registration framework. Our algorithm seeks the optimal coordinate mapping by simultaneously considering structural alignment, local signal profile reorientation, and deformation regularization. Our algorithm also incorporates a multi-kernel strategy to concurrently register anatomical structures at different scales. We demonstrate the efficacy of our approach using in vivo data and report detailed qualitative and quantitative results in comparison with several different registration strategies

    Segmentation of Infant Brain Using Nonnegative Matrix Factorization

    Get PDF
    This study develops an atlas-based automated framework for segmenting infants\u27 brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant\u27s brain at the isointense age (6-12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov-Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI

    Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation

    Get PDF
    This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM). but with a more efficient optimisation scheme - both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss-Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data. (C) 2011 Elsevier Inc. All rights reserved
    • …
    corecore