14,521 research outputs found

    Intelligent computational sketching support for conceptual design

    Get PDF
    Sketches, with their flexibility and suggestiveness, are in many ways ideal for expressing emerging design concepts. This can be seen from the fact that the process of representing early designs by free-hand drawings was used as far back as in the early 15th century [1]. On the other hand, CAD systems have become widely accepted as an essential design tool in recent years, not least because they provide a base on which design analysis can be carried out. Efficient transfer of sketches into a CAD representation, therefore, is a powerful addition to the designers' armoury.It has been pointed out by many that a pen-on-paper system is the best tool for sketching. One of the crucial requirements of a computer aided sketching system is its ability to recognise and interpret the elements of sketches. 'Sketch recognition', as it has come to be known, has been widely studied by people working in such fields: as artificial intelligence to human-computer interaction and robotic vision. Despite the continuing efforts to solve the problem of appropriate conceptual design modelling, it is difficult to achieve completely accurate recognition of sketches because usually sketches implicate vague information, and the idiosyncratic expression and understanding differ from each designer

    Semantic categories underlying the meaning of ‘place’

    Get PDF
    This paper analyses the semantics of natural language expressions that are associated with the intuitive notion of ‘place’. We note that the nature of such terms is highly contested, and suggest that this arises from two main considerations: 1) there are a number of logically distinct categories of place expression, which are not always clearly distinguished in discourse about ‘place’; 2) the many non-substantive place count nouns (such as ‘place’, ‘region’, ‘area’, etc.) employed in natural language are highly ambiguous. With respect to consideration 1), we propose that place-related expressions should be classified into the following distinct logical types: a) ‘place-like’ count nouns (further subdivided into abstract, spatial and substantive varieties), b) proper names of ‘place-like’ objects, c) locative property phrases, and d) definite descriptions of ‘place-like’ objects. We outline possible formal representations for each of these. To address consideration 2), we examine meanings, connotations and ambiguities of the English vocabulary of abstract and generic place count nouns, and identify underlying elements of meaning, which explain both similarities and differences in the sense and usage of the various terms

    Shape matching and clustering in design

    Get PDF
    Generalising knowledge and matching patterns is a basic human trait in re-using past experiences. We often cluster (group) knowledge of similar attributes as a process of learning and or aid to manage the complexity and re-use of experiential knowledge [1, 2]. In conceptual design, an ill-defined shape may be recognised as more than one type. Resulting in shapes possibly being classified differently when different criteria are applied. This paper outlines the work being carried out to develop a new technique for shape clustering. It highlights the current methods for analysing shapes found in computer aided sketching systems, before a method is proposed that addresses shape clustering and pattern matching. Clustering for vague geometric models and multiple viewpoint support are explored

    Automatic grounding of vague geographic ontology in data

    Get PDF
    In constructing an ontological theory of a domain such as geography, it is important not only to take account of the vagueness and ambiguity which is inherent in many of the relevant concepts, but also to be able to relate the high-level definitions of the theory to actual sets of data of varying kinds. Any attempt to ignore or remove vagueness and ambiguity risks errors and conflict in the ontological theory with the knowledge of different domain experts, while an inability to ground the theory in real data limits its practical use. We present here a means of structuring such a theory to handle these issues in a principled manner, which lends itself to concrete implementation. We illustrate with reference to several examples from the domain of hydrography
    • …
    corecore