741 research outputs found

    Revisiting the contribution of transpiration to global terrestrial evapotranspiration

    Get PDF
    Even though knowing the contributions of transpiration (T), soil and open water evaporation (E), and interception (I) to terrestrial evapotranspiration (ET=T+E+I) is crucial for understanding the hydrological cycle and its connection to ecological processes, the fraction of T is unattainable by traditional measurement techniques over large scales. Previously reported global mean T/(E+T+I) from multiple independent sources, including satellite-based estimations, reanalysis, land surface models, and isotopic measurements, varies substantially from 24% to 90%. Here we develop a new ET partitioning algorithm, which combines global evapotranspiration estimates and relationships between leaf area index (LAI) and T/(E+T) for different vegetation types, to upscale a wide range of published site-scale measurements. We show that transpiration accounts for about 57.2% (with standard deviation6.8%) of global terrestrial ET. Our approach bridges the scale gap between site measurements and global model simulations,and can be simply implemented into current global climate models to improve biological CO2 flux simulations

    First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems

    Full text link
    The importance of semi-arid ecosystems in the global carbon cycle as sinks for CO2 emissions has recently been highlighted. Africa is a carbon sink and nearly half its area comprises arid and semi-arid ecosystems. However, there are uncertainties regarding CO2 fluxes for semi-arid ecosystems in Africa, particularly savannas and dry tropical woodlands. In order to improve on existing remote-sensing based methods for estimating carbon uptake across semi-arid Africa we applied and tested the recently developed plant phenology index (PPI). We developed a PPI-based model estimating gross primary productivity (GPP) that accounts for canopy water stress, and compared it against three other Earth observation-based GPP models: the temperature and greenness model, the greenness and radiation model and a light use efficiency model. The models were evaluated against in situ data from four semi-arid sites in Africa with varying tree canopy cover (3 to 65 percent). Evaluation results from the four GPP models showed reasonable agreement with in situ GPP measured from eddy covariance flux towers (EC GPP) based on coefficient of variation, root-mean-square error, and Bayesian information criterion. The PPI-based GPP model was able to capture the magnitude of EC GPP better than the other tested models. The results of this study show that a PPI-based GPP model is a promising tool for the estimation of GPP in the semi-arid ecosystems of Africa.Comment: Accepted manuscript; 12 pages, 4 tables, 9 figure

    Principles and methods of scaling geospatial Earth science data

    Get PDF
    The properties of geographical phenomena vary with changes in the scale of measurement. The information observed at one scale often cannot be directly used as information at another scale. Scaling addresses these changes in properties in relation to the scale of measurement, and plays an important role in Earth sciences by providing information at the scale of interest, which may be required for a range of applications, and may be useful for inferring geographical patterns and processes. This paper presents a review of geospatial scaling methods for Earth science data. Based on spatial properties, we propose a methodological framework for scaling addressing upscaling, downscaling and side-scaling. This framework combines scale-independent and scale-dependent properties of geographical variables. It allows treatment of the varying spatial heterogeneity of geographical phenomena, combines spatial autocorrelation and heterogeneity, addresses scale-independent and scale-dependent factors, explores changes in information, incorporates geospatial Earth surface processes and uncertainties, and identifies the optimal scale(s) of models. This study shows that the classification of scaling methods according to various heterogeneities has great potential utility as an underpinning conceptual basis for advances in many Earth science research domains. © 2019 Elsevier B.V

    Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties

    Get PDF
    The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km(2)) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m(-2) yr(-1), respectively) compared to tundra (average annual NEE +10 and -2 g C m(-2) yr(-1)). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high

    Scaling and balancing carbon dioxide fluxes in a heterogeneous tundra ecosystem of the Lena River Delta

    No full text
    The current assessments of the carbon turnover in the Arctic tundra are subject to large uncertainties. This problem can (inter alia) be ascribed to both the general shortage of flux data from the vast and sparsely inhabited Arctic region, as well as the typically high spatiotemporal variability of carbon fluxes in tundra ecosystems. Addressing these challenges, carbon dioxide fluxes on an active flood plain situated in the Siberian Lena River Delta were studied during two growing seasons with the eddy covariance method. The footprint exhibited a heterogeneous surface, which generated mixed flux signals that could be partitioned in such a way that both respiratory loss and photosynthetic gain were obtained for each of two vegetation classes. This downscaling of the observed fluxes revealed a differing seasonality in the net uptake of bushes (−0.89 µmol m−2 s−1) and sedges (−0.38 µmol mm−2 s−1) in 2014. That discrepancy, which was concealed in the net signal, resulted from a comparatively warm spring in conjunction with an early snowmelt and a varying canopy structure. Thus, the representativeness of footprints may adversely be affected in response to prolonged unusual weather conditions. In 2015, when air temperatures on average corresponded to climatological means, both vegetation-class-specific flux rates were of similar magnitude (−0.69 µmol m−2 s−1). A comprehensive set of measures (e.g. phenocam) corroborated the reliability of the partitioned fluxes and hence confirmed the utility of flux decomposition for enhanced flux data analysis. This scrutiny encompassed insights into both the phenological dynamic of individual vegetation classes and their respective functional flux to flux driver relationships with the aid of ecophysiologically interpretable parameters. For comparison with other sites, the decomposed fluxes were employed in a vegetation class area-weighted upscaling that was based on a classified high-resolution orthomosaic of the flood plain. In this way, robust budgets that take the heterogeneous surface characteristics into account were estimated. In relation to the average sink strength of various Arctic flux sites, the flood plain constitutes a distinctly stronger carbon dioxide sink. Roughly 42 % of this net uptake, however, was on average offset by methane emissions lowering the sink strength for greenhouse gases. With growing concern about rising greenhouse gas emissions in high-latitude regions, providing robust carbon budgets from tundra ecosystems is critical in view of accelerating permafrost thaw, which can impact the global climate for centuries

    Upscaling carbon fluxes from towers to the regional scale: Influence of parameter variability and land cover representation on regional flux estimates

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    Upscaling fluxes from towers to regions, continents and global scales using datadriven approaches

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes

    Get PDF
    Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems
    • …
    corecore