7,096 research outputs found

    Representation and generation of plans using graph spectra

    Get PDF
    Numerical comparison of spaces with one another is often achieved with set scalar measures such as global and local integration, connectivity, etc., which capture a particular quality of the space but therefore lose much of the detail of its overall structure. More detailed methods such as graph edit distance are difficult to calculate, particularly for large plans. This paper proposes the use of the graph spectrum, or the ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space as a whole. The result is a vector of high dimensionality that can be easily measured against others for detailed comparison. Several graph types are investigated, including boundary and axial representations, as are several methods for deriving the spectral vector. The effectiveness of these is evaluated using a genetic algorithm optimisation to generate plans to match a given spectrum, and evolution is seen to produce plans similar to the initial targets, even in very large search spaces. Results indicate that boundary graphs alone can capture the gross topological qualities of a space, but axial graphs are needed to indicate local relationships. Methods of scaling the spectra are investigated in relation to both global local changes to plan arrangement. For all graph types, the spectra were seen to capture local patterns of spatial arrangement even as global size is varied

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field
    • …
    corecore