4,750 research outputs found

    Energy Efficiency Analysis of Heterogeneous Cache-enabled 5G Hyper Cellular Networks

    Get PDF
    The emerging 5G wireless networks will pose extreme requirements such as high throughput and low latency. Caching as a promising technology can effectively decrease latency and provide customized services based on group users behaviour (GUB). In this paper, we carry out the energy efficiency analysis in the cache-enabled hyper cellular networks (HCNs), where the macro cells and small cells (SCs) are deployed heterogeneously with the control and user plane (C/U) split. Benefiting from the assistance of macro cells, a novel access scheme is proposed according to both user interest and fairness of service, where the SCs can turn into semi- sleep mode. Expressions of coverage probability, throughput and energy efficiency (EE) are derived analytically as the functions of key parameters, including the cache ability, search radius and backhaul limitation. Numerical results show that the proposed scheme in HCNs can increase the network coverage probability by more than 200% compared with the single- tier networks. The network EE can be improved by 54% than the nearest access scheme, with larger research radius and higher SC cache capacity under lower traffic load. Our performance study provides insights into the efficient use of cache in the 5G software defined networking (SDN)

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

    Get PDF
    Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability
    • …
    corecore