105 research outputs found

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    Spatial interference shaping for underlay MIMO cognitive networks

    Get PDF
    Interference temperature (IT) is a widely-used approach for protecting primary users (PUs) from the secondary users (SUs) in underlay cognitive radio. H owever, when multiple antennas are available at the transmitters and receivers, the spatial structure of the interference comes into play, strongly affecting the performance of the primary network. In this work, we propose interference shaping constraints as an alternative to IT-based approaches. Spatial shaping constraints take account of the structure of interference and exploit it in benefit of the secondary network. Moreover, they can be designed dynamically based on the channel conditions and performance requirements of the PUs. We first show that spatial shaping constraints generalize IT, in that the latter can be expressed as a set of isotropic shaping constraints on each interference dimension. Then, we exemplary consider a PU that has a rate requirement, and propose an algorithm for obtaining suitable shaping matrices, which can be easily modified to include primary transmitter cooperation. This algorithm is performed at the primary receiver using only local channel state information. Afterwards, we address the transceiver optimization of the SU, modeled as a multiple-input multiple-output point-to-point link, and provide optimal and suboptimal transmit covariance designs under the proposed shaping constraints.C. Lameiro and I. Santamaría have received funding from the Spanish Government (MICINN) under projects TEC2013-47141-C4-3- R (RACHEL), TEC2016-75067-C4-4-R (CARMEN) and FPU Grant AP2010-2189. W. Utschick receives financial support from the Deutsche Forschungsgemeinschaft (DFG) under the grant Ut36/15-1

    Cognitive Orthogonal Precoder for Two-tiered Networks Deployment

    Full text link
    In this work, the problem of cross-tier interference in a two-tiered (macro-cell and cognitive small-cells) network, under the complete spectrum sharing paradigm, is studied. A new orthogonal precoder transmit scheme for the small base stations, called multi-user Vandermonde-subspace frequency division multiplexing (MU-VFDM), is proposed. MU-VFDM allows several cognitive small base stations to coexist with legacy macro-cell receivers, by nulling the small- to macro-cell cross-tier interference, without any cooperation between the two tiers. This cleverly designed cascaded precoder structure, not only cancels the cross-tier interference, but avoids the co-tier interference for the small-cell network. The achievable sum-rate of the small-cell network, satisfying the interference cancelation requirements, is evaluated for perfect and imperfect channel state information at the transmitter. Simulation results for the cascaded MU-VFDM precoder show a comparable performance to that of state-of-the-art dirty paper coding technique, for the case of a dense cellular layout. Finally, a comparison between MU-VFDM and a standard complete spectrum separation strategy is proposed. Promising gains in terms of achievable sum-rate are shown for the two-tiered network w.r.t. the traditional bandwidth management approach.Comment: 11 pages, 9 figures, accepted and to appear in IEEE Journal on Selected Areas in Communications: Cognitive Radio Series, 2013. Copyright transferred to IEE

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Interference shaping constraints for underlay MIMO interference channels

    Get PDF
    In this paper, a cognitive radio (CR) scenario comprised of a secondary interference channel (IC) and a primary point-to-point link (PPL) is studied, when the former interferes the latter. In order to satisfy a given rate requirement at the PPL, typical approaches impose an interference temperature constraint (IT).When the PPL transmits multiple streams, however, the spatial structure of the interference comes into play. In such cases, we show that spatial interference shaping constraints can provide higher sum-rate performance to the IC while ensuring the required rate at the PPL. Then, we extend the interference leakage minimization algorithm (MinIL) to incorporate such constraints. An additional power control step is included in the optimization procedure to improve the sum-rate when the interference alignment (IA) problem becomes infeasible due to the additional constraint. Numerical examples are provided to illustrate the effectiveness of the spatial shaping constraint in comparison to IT when the PPL transmits multiple data streams.The research leading to these results has received funding from the Spanish Government (MICINN) under projects TEC2010-19545-C04-03 (COSIMA), CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS), and FPU Grant AP2010-2189. This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) under the grant Ut36/15-1
    corecore