157 research outputs found

    Spatial SINR Games of Base Station Placement and Mobile Association

    Full text link
    We study the question of determining locations of base stations that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals who can connect to the base station that offers the best utility. The signal to interference and noise ratio is used as the quantity that determines the association. We first study the SINR association-game: we determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: (i) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; (ii) A cell corresponding to a BS may be the union of disconnected sub-cells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: we determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation

    Green Base Station Placement for Microwave Backhaul Links

    Get PDF
    Wireless mobile backhaul networks have been proposed as a substitute in cases in which wired alternatives are not available due to economical or geographical reasons. In this work, we study the location problem of base stations in a given region where mobile terminals are distributed according to a certain probability density function and the base stations communicate through microwave backhaul links. Using results of optimal transport theory, we provide the optimal asymptotic distribution of base stations in the considered setting by minimizing the total power over the whole network.Comment: Proceedings of the International Symposium on Ubiquitous Networking (UNet'17), May 2017, Casablanca, Morocc

    Optimal Base Station Placement: A Stochastic Method Using Interference Gradient In Downlink Case

    Get PDF
    In this paper, we study the optimal placement and optimal number of base stations added to an existing wireless data network through the interference gradient method. This proposed method considers a sub-region of the existing wireless data network, hereafter called region of interest. In this region, the provider wants to increase the network coverage and the users throughput. In this aim, the provider needs to determine the optimal number of base stations to be added and their optimal placement. The proposed approach is based on the Delaunay triangulation of the region of interest and the gradient descent method in each triangle to compute the minimum interference locations. We quantify the increase of coverage and throughput.Comment: This work has been presented in the 5th International ICST Conference on Performance Evaluation Methodologies and Tools (Valuetools 2011

    Spatial games and global optimization for the mobile association problem: the downlink case

    No full text
    International audienceWe study the mobile association problem: we determine the cells corresponding to each base station, i.e, the locations at which intelligent mobile terminals prefer to connect to a given base station rather than to others. This paper proposes a new approach based on optimal transport theory to characterize the solution based on previous works on fluid approximations. We are able to characterize the global optimal solution, as well as the user optimal solution, for the downlink case problem

    Spatial games combining base station placement and mobile association: the downlink case

    Get PDF
    International audienceWe study the mobile association problem: we determine the cells corresponding to each base station, i.e, the locations at which intelligent mobile terminals prefer to connect to a given base station rather than to others. This paper proposes a new approach based on optimal transport theory to characterize the solution based on previous works on fluid approximations. We are able to characterize the global optimal solution, as well as the user optimal solution, for the downlink case problem

    Positioning of multiple unmanned aerial vehicle base stations in future wireless network

    Get PDF
    Abstract. Unmanned aerial vehicle (UAV) base stations (BSs) can be a reliable and efficient alternative to full fill the coverage and capacity requirements when the backbone network fails to provide the requirements during temporary events and after disasters. In this thesis, we consider three-dimensional deployment of multiple UAV-BSs in a millimeter-Wave network. Initially, we defined a set of locations for a UAV-BS to be deployed inside a cell, then possible combinations of predefined locations for multiple UAV-BSs are determined and assumed that users have fixed locations. We developed a novel algorithm to find the feasible positions from the predefined locations of multiple UAVs subject to a signal-to-interference-plus-noise ratio (SINR) constraint of every associated user to guarantees the quality-of-service (QoS), UAV-BS’s limited hovering altitude constraint and restricted operating zone because of regulation policies. Further, we take into consideration the millimeter-wave transmission and multi-antenna techniques to generate directional beams to serve the users in a cell. We cast the positioning problem as an ℓ₀ minimization problem. This is a combinatorial, NP-hard, and finding the optimum solution is not tractable by exhaustive search. Therefore, we focused on the sub-optimal algorithm to find a feasible solution. We approximate the ℓ₀ minimization problem as non-combinatorial ℓ₁-norm problem. The simulation results reveal that, with millimeter-wave transmission the positioning of the UAV-BS while satisfying the constrains is feasible. Further, the analysis shows that the proposed algorithm achieves a near-optimal location to deploy multiple UVABS simultaneously
    corecore