391 research outputs found

    Global hydro-climatic biomes identified via multitask learning

    Get PDF
    The most widely used global land cover and climate classifications are based on vegetation characteristics and/or climatic conditions derived from observational data. However, these classification schemes do not directly stem from the characteristic interaction between the local climate and the biotic environment. In this work, we model the dynamic interplay between vegetation and local climate in order to delineate ecoregions that share a coherent response to hydro-climate variability. Our novel framework is based on a multitask learning approach that discovers the spatial relationships among different locations by learning a low-dimensional representation of predictive structures. This low-dimensional representation is combined with a clustering algorithm that yields a classification of biomes with coherent behaviour. Experimental results using global observation-based datasets indicate that, without the need to prescribe any land cover information, the identified regions of coherent climate-vegetation interactions agree well with the expectations derived from traditional global land cover maps. The resulting global "hydro-climatic biomes" can be used to analyse the anomalous behaviour of specific ecosystems in response to climate extremes and to benchmark climate-vegetation interactions in Earth system models

    Tensor Regression

    Full text link
    Regression analysis is a key area of interest in the field of data analysis and machine learning which is devoted to exploring the dependencies between variables, often using vectors. The emergence of high dimensional data in technologies such as neuroimaging, computer vision, climatology and social networks, has brought challenges to traditional data representation methods. Tensors, as high dimensional extensions of vectors, are considered as natural representations of high dimensional data. In this book, the authors provide a systematic study and analysis of tensor-based regression models and their applications in recent years. It groups and illustrates the existing tensor-based regression methods and covers the basics, core ideas, and theoretical characteristics of most tensor-based regression methods. In addition, readers can learn how to use existing tensor-based regression methods to solve specific regression tasks with multiway data, what datasets can be selected, and what software packages are available to start related work as soon as possible. Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis. It is essential reading for all students, researchers and practitioners of working on high dimensional data.Comment: 187 pages, 32 figures, 10 table

    A Novel Transformer Network with Shifted Window Cross-Attention for Spatiotemporal Weather Forecasting

    Full text link
    Earth Observatory is a growing research area that can capitalize on the powers of AI for short time forecasting, a Now-casting scenario. In this work, we tackle the challenge of weather forecasting using a video transformer network. Vision transformer architectures have been explored in various applications, with major constraints being the computational complexity of Attention and the data hungry training. To address these issues, we propose the use of Video Swin-Transformer, coupled with a dedicated augmentation scheme. Moreover, we employ gradual spatial reduction on the encoder side and cross-attention on the decoder. The proposed approach is tested on the Weather4Cast2021 weather forecasting challenge data, which requires the prediction of 8 hours ahead future frames (4 per hour) from an hourly weather product sequence. The dataset was normalized to 0-1 to facilitate using the evaluation metrics across different datasets. The model results in an MSE score of 0.4750 when provided with training data, and 0.4420 during transfer learning without using training data, respectively.Comment: 16 pages, 7 figures, 7 table

    Multi-task Sparse Structure Learning With Gaussian Copula Models

    Get PDF
    Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq)Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq)Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously. While sometimes the underlying task relationship structure is known, often the structure needs to be estimated from data at hand. In this paper, we present a novel family of models for MTL, applicable to regression and classification problems, capable of learning the structure of tasks relationship. In particular, we consider a joint estimation problem of the tasks relationship structure and the individual task parameters, which is solved using alternating minimization. The task relationship revealed by structure learning is founded on recent advances in Gaussian graphical models endowed with sparse estimators of the precision (inverse covariance) matrix. An extension to include flexible Gaussian copula models that relaxes the Gaussian marginal assumption is also proposed. We illustrate the e ff ectiveness of the proposed model on a variety of synthetic and benchmark data sets for regression and classi fi cation. We also consider the problem of combining Earth System Model (ESM) outputs for better projections of future climate, with focus on projections of temperature by combining ESMs in South and North America, and show that the proposed model outperforms several existing methods for the problem.17NSF [IIS-1029711, IIS-0916750, IIS-0953274, CNS-1314560, IIS-1422557, CCF-1451986, IIS-1447566]NASA [NNX12AQ39A]IBMYahooCNPqCNPq, BrazilConselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq)Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq

    The European Lake Microbiome: A Study in Complexity

    Get PDF
    While it is known that microbes play many indispensable roles in ecosystems, the relationship between microbiomes and their environment is far from being well-understood. In part, this is the case because the methods necessary for studying environmental microbiomes, such as Next- Generation Sequencing and high-dimensional Machine Learning, have been developed relatively recently. However, the complex nature of ecosystems and environmental microbiomes acts as a further barrier to progress in this field of research. This thesis develops methods and concepts used to gain insight into the ecology of micro- biomes in lakes. It is based around two metabarcoding datasets sampled from lakes in Austria and the whole of Europe, respectively, and attempts to elucidate the microbiome’s relationship to environmental parameters. To this end, a tool for GPS-based dataset enhancement and a ma- chine learning framework for measuring microbiome covariation is developed. Building on this, the latent structure of the microbiome is estimated. In the discussion, a novel theory of informa- tion transmission in complex environments is described. Taken together, the work included herein presents a thorough analysis of the European lake microbiome that takes the complexity of the study object into account. The results point to- wards parameters that act as drivers of lake microbiome structure as well as microorganisms that might act as keystone species for ecosystem functioning. Furthermore, this work might provide the basis for considerable future progress in the study of environmental microbiomes

    Tensor-based regression models and applications

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2017-2018Avec l’avancement des technologies modernes, les tenseurs d’ordre élevé sont assez répandus et abondent dans un large éventail d’applications telles que la neuroscience informatique, la vision par ordinateur, le traitement du signal et ainsi de suite. La principale raison pour laquelle les méthodes de régression classiques ne parviennent pas à traiter de façon appropriée des tenseurs d’ordre élevé est due au fait que ces données contiennent des informations structurelles multi-voies qui ne peuvent pas être capturées directement par les modèles conventionnels de régression vectorielle ou matricielle. En outre, la très grande dimensionnalité de l’entrée tensorielle produit une énorme quantité de paramètres, ce qui rompt les garanties théoriques des approches de régression classique. De plus, les modèles classiques de régression se sont avérés limités en termes de difficulté d’interprétation, de sensibilité au bruit et d’absence d’unicité. Pour faire face à ces défis, nous étudions une nouvelle classe de modèles de régression, appelés modèles de régression tensor-variable, où les prédicteurs indépendants et (ou) les réponses dépendantes prennent la forme de représentations tensorielles d’ordre élevé. Nous les appliquons également dans de nombreuses applications du monde réel pour vérifier leur efficacité et leur efficacité.With the advancement of modern technologies, high-order tensors are quite widespread and abound in a broad range of applications such as computational neuroscience, computer vision, signal processing and so on. The primary reason that classical regression methods fail to appropriately handle high-order tensors is due to the fact that those data contain multiway structural information which cannot be directly captured by the conventional vector-based or matrix-based regression models, causing substantial information loss during the regression. Furthermore, the ultrahigh dimensionality of tensorial input produces huge amount of parameters, which breaks the theoretical guarantees of classical regression approaches. Additionally, the classical regression models have also been shown to be limited in terms of difficulty of interpretation, sensitivity to noise and absence of uniqueness. To deal with these challenges, we investigate a novel class of regression models, called tensorvariate regression models, where the independent predictors and (or) dependent responses take the form of high-order tensorial representations. We also apply them in numerous real-world applications to verify their efficiency and effectiveness. Concretely, we first introduce hierarchical Tucker tensor regression, a generalized linear tensor regression model that is able to handle potentially much higher order tensor input. Then, we work on online local Gaussian process for tensor-variate regression, an efficient nonlinear GPbased approach that can process large data sets at constant time in a sequential way. Next, we present a computationally efficient online tensor regression algorithm with general tensorial input and output, called incremental higher-order partial least squares, for the setting of infinite time-dependent tensor streams. Thereafter, we propose a super-fast sequential tensor regression framework for general tensor sequences, namely recursive higher-order partial least squares, which addresses issues of limited storage space and fast processing time allowed by dynamic environments. Finally, we introduce kernel-based multiblock tensor partial least squares, a new generalized nonlinear framework that is capable of predicting a set of tensor blocks by merging a set of tensor blocks from different sources with a boosted predictive power

    Machine Learning for Earth Systems Modeling, Analysis and Predictability

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) methods and applications have been continuously explored in many areas of scientific research. While these methods have lead to many advances in climate science, there remains room for growth especially in Earth System Modeling, analysis and predictability. Due to their high computational expense and large volumes of complex data they produce, earth system models (ESMs) provide an abundance of potential for enhancing both our understanding of the climate system as well as improving performance of ESMs themselves using ML techniques. Here I demonstrate 3 specific areas of development using ML: statistical downscaling, predictability using non-linear latent spaces and emulation of complex parametrization. These three areas of research illustrate the ability of innovative ML methods to advance our understanding of climate systems through ESMs. In Aim 1, I present a first application of a fast super resolution convolutional neural network (FSRCNN) based approach for downscaling earth system model (ESM) simulations. We adapt the FSRCNN to improve reconstruction on ESM data, we term the FSRCNN-ESM. We find that FSRCNN-ESM outperforms FSRCNN and other super-resolution methods in reconstructing high resolution images producing finer spatial scale features with better accuracy for surface temperature, surface radiative fluxes and precipitation. In Aim 2, I construct a novel Multi-Input Multi-Output Autoencoder-decoder (MIMO-AE) in an application of multi-task learning to capture the non-linear relationship of Southern California precipitation (SC-PRECIP) and tropical Pacific Ocean sea surface temperature (TP-SST) on monthly time-scales. I find that the MIMO-AE index provides enhanced predictability of SC-PRECIP for a lead-time of up-to four months as compared to Ni{\~n}o 3.4 index and the El Ni{\~n}o Southern Oscillation Longitudinal Index. I also use a MTL method to expand on a convolutional long short term memory (conv-LSTM) to predict Nino 3.4 index by including multiple input variables known to be associated with ENSO, namely sea level pressure (SLP), outgoing longwave radiation (ORL) and surface level zonal winds (U). In Aim 3, I demonstrate the capability of DNNs for learning computationally expensive parameterizations in ESMs. This study develops a DNN to replace the full radiation model in the E3SM
    • …
    corecore