3,557 research outputs found

    UTHM water quality classification based on sub index

    Get PDF
    River or stream at their source is unpolluted, but as water flow downstream, the river or lake is receiving point and non-point pollutant source. Ammoniacal nitrogen (NH3- N) and suspended solids (SS) strongly influences the dynamics of the dissolved oxygen in the water. Studies on monitoring this parameter were conducted for a river or lake but limited to the small man-made lake. This study is initiate to determine the changes in water quality of UTHM watershed as the water flows from upstream to downstream. The monitoring of NH3-N and TSS were monitored at two sampling schemes, 1) at the two-week interval and, 2) at a daily basis followed by the determination of the water quality sub-index particularly SIAN and SISS. The results showed that the two lakes in UTHM watershed were classified as polluted. In conclusion, the remedial action should be implemented to improve the water quality to meet the requirements at least to meet the recreational purpose

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    MIMO Systems: Principles, Iterative Techniques, and advanced Polarization

    No full text
    International audienceThis chapter considers the principles of multiple-input multiple-output (MIMO) wireless communication systems as well as some recent accomplishments concerning their implementation. By employing multiple antennas at both transmitter and receiver, very high data rates can be achieved under the condition of deployment in a rich-scattering propagation medium. This interesting property of MIMO systems suggests their use in the future high-rate and high-quality wireless communication systems. Several concepts in MIMO systems are reviewed in this chapter. We first consider MIMO channel models and recall the basic principles of MIMO structures and channel modeling. We next study the MIMO channel capacity and present the early developments in these systems concerning the information theory aspect. Iterative signal detection is considered next; it considers iterative techniques for space-time decoding. As the capacity is inversely proportional to the spatial channel correlation, MIMO antennas should be sufficiently separated, usually by several wavelengths. In order to minimize antennas' deployment, we present advanced polarization diversity techniques for MIMO systems and explain how they can help to reduce the spatial correlation in order to achieve high transmission rates. We end the chapter by considering the application of MIMO systems in local area networks, as well as their potential in enhancing range, localization, and power efficiency of sensor networks

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    Detection, Localization and Characterization of Gravitational Wave Bursts in a Pulsar Timing Array

    Get PDF
    Efforts to detect gravitational waves by timing an array of pulsars have focused traditionally on stationary gravitational waves: e.g., stochastic or periodic signals. Gravitational wave bursts --- signals whose duration is much shorter than the observation period --- will also arise in the pulsar timing array waveband. Sources that give rise to detectable bursts include the formation or coalescence of supermassive black holes (SMBHs), the periapsis passage of compact objects in highly elliptic or unbound orbits about a SMBH, or cusps on cosmic strings. Here we describe how pulsar timing array data may be analyzed to detect and characterize these bursts. Our analysis addresses, in a mutually consistent manner, a hierarchy of three questions: \emph{i}) What are the odds that a dataset includes the signal from a gravitational wave burst? \emph{ii}) Assuming the presence of a burst, what is the direction to its source? and \emph{iii}) Assuming the burst propagation direction, what is the burst waveform's time dependence in each of its polarization states? Applying our analysis to synthetic data sets we find that we can \emph{detect} gravitational waves even when the radiation is too weak to either localize the source of infer the waveform, and \emph{detect} and \emph{localize} sources even when the radiation amplitude is too weak to permit the waveform to be determined. While the context of our discussion is gravitational wave detection via pulsar timing arrays, the analysis itself is directly applicable to gravitational wave detection using either ground or space-based detector data.Comment: 43 pages, 13 figures, submitted to ApJ

    Breaking FOV-Aperture Trade-Off with Multi-Mode Nano-Photonic Antennas

    Get PDF
    Nano-photonic antennas are one of the key components in integrated photonic transmitter and receiver systems. Conventionally, grating couplers, designed to couple into an optical fiber, suffering from limitations such as large footprint and small field-of-view (FOV) have been used as on-chip antennas. The challenge of the antenna design is more pronounced for the receiver systems, where both the collected power by the antenna and its FOV often need to be maximized. While some novel solutions have been demonstrated recently, identifying fundamental limits and trade-offs in nano-photonic antenna design is essential for devising compact antenna structures with improved performance. In this paper, the fundamental electromagnetic limits, as well as fabrication imposed constraints on improving antenna effective aperture and FOV are studied, and approximated performance upper limits are derived and quantified. By deviating from the conventional assumptions leading to these limits, high-performance multi-mode antenna structures with performance characteristics beyond the conventional perceived limits are demonstrated. Finally, the application of a pillar multi-mode antenna in a dense array is discussed, an antenna array with more than 95% collection efficiency and 170∘ FOV is demonstrated, and a coherent receiving system utilizing such an aperture is presented

    The Goldstone solar system radar: A science instrument for planetary research

    Get PDF
    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided
    • …
    corecore