101 research outputs found

    Next Generation High Throughput Satellite System

    Get PDF
    This paper aims at presenting an overview of the state-of-the-art in High Throughput Satellite (HTS) systems for Fixed Satellite Services (FSS) and High Density-FSS. Promising techniques and innovative strategies that can enhance system performance are reviewed and analyzed aiming to show what to expect for next generation ultra-high capacity satellite systems. Potential air interface evolutions, efficient frequency plans,feeder link dimensioning strategies and interference cancellation techniques are presented to show how Terabit/s satellite myth may turn into reality real soon

    Spatial PAPR Reduction in Symbol-level Precoding for the Multi-beam Satellite Downlink

    Get PDF
    In this work, a novel symbol-level precoding scheme is proposed, for managing the multi-user interference in the forward downlink channel of a multi-beam satellite system. Besides exploiting the constructive interference effect, the proposed scheme aims at improving the robustness of the transmitted signals to the non-linear distortions of practical satellite systems. This is done by reducing the imbalances between the instantaneous power transmitted by the multiple antennas, which are detrimental in non-linear systems. More specifically, this work proposes a symbol-level precoding scheme performing the minimization of the spatial peak-to-average power ratio, under Quality-of-Service constraints. An iterative algorithm is proposed to solve the related optimization problem. Numerical results are presented to assess the performance of the proposed scheme, which outperforms the state of the art symbol-level precoding techniques in terms of spatial peak-to-average power ratio across the transmitting antennas

    Advanced Symbol-level Precoding Schemes for Interference Exploitation in Multi-antenna Multi-user Wireless Communications

    Get PDF
    The utilization of multi-antenna transmitters relying on full frequency reuse has proven to be an effective strategy towards fulfilling the constantly increasing throughput requirements of wireless communication systems. As a consequence, in the last two decades precoding has been a prolific research area, due to its ability to handle the interference arising among simultaneous transmissions addressed to different co-channel users. The conventional precoding strategies aim at mitigating the multi-user interference (MUI) by exploiting the knowledge of the channel state information (CSI). More recently, novel approaches have been proposed where the aim is not to eliminate the interference, but rather to control it so as to achieve a constructive interference effect at each receiver. In these schemes, referred to as symbol-level precoding (SLP), the data information (data symbols) is used together with the CSI in the precoding design, which can be addressed following several optimization strategies. In the context of SLP, the work carried out in this thesis is mainly focused on developing more advanced optimization strategies suitable to non-linear systems, where the per-antenna high-power amplifiers introduce an amplitude and phase distortion on the transmitted signals. More specifically, the main objective is to exploit the potential of SLP not only to achieve the constructive interference at the receivers, but also to control the per-antenna instantaneous transmit power, improving the power dynamics of the transmitted waveforms. In fact, a reduction of the power variation of the signals, both in the spatial dimension (across the different antennas) and in the temporal dimension, is particularly important for mitigating the non-linear effects. After a detailed review of the state of the art of SLP, the first part of the thesis is focused on improving the power dynamics of the transmitted signals in the spatial dimension, by reducing the instantaneous power imbalances across the different antennas. First, a SLP per-antenna power minimization scheme is presented, followed by a related max-min fair formulation with per-antenna power constraints. These approaches allow to reduce the power peaks of the signals across the antennas. Next, more advanced SLP schemes are formulated and solved, with the objective of further improving the spatial dynamics of the signals. Specifically, a first approach performs a peak power minimization under a lower bound constraint on the per-antenna transmit power, while a second strategy minimizes the spatial peak-to-average power ratio. The second part of this thesis is devoted to developing a novel SLP method, referred to as spatio-temporal SLP, where the temporal variation of the transmit power is also considered in the SLP optimization. This new model allows to minimize the peak-to-average power ratio of the transmitted waveforms both in the spatial and in the temporal dimensions, thus further improving the robustness of the signals to non-linear effects. Then, this thesis takes one step further, by exploiting the developed spatio-temporal SLP model in a different context. In particular, a spatio-temporal SLP scheme is proposed which enables faster-than-Nyquist (FTN) signaling over multi-user systems, by constructively handling at the transmitter side not only the MUI but also the inter-symbol interference (ISI). This strategy allows to benefit from the increased throughput provided by FTN signaling without imposing additional complexity at the user terminals. Extensive numerical results are presented throughout the thesis, in order to assess the performance of the proposed schemes with respect to the state of the art in SLP. The thesis concludes summarizing the main research findings and identifying the open problems, which will constitute the basis for the future work

    PAPR Minimization through Spatio-temporal Symbol-level Precoding for the Non-linear Multi-user MISO Channel

    Get PDF
    Symbol-level precoding (SLP) is a promising technique which allows to constructively exploit the multi-user interference in the downlink of multiple antenna systems. Recently, this approach has also been used in the context of non-linear systems for reducing the instantaneous power imbalances among the antennas. However, previous works have not exploited SLP to improve the dynamic properties of the waveforms in the temporal dimension, which are fundamental for non-linear systems. To fill this gap, this paper proposes a novel precoding method, referred to as spatio-temporal SLP, which minimizes the peak-to-average power ratio of the transmitted waveforms both in the spatial and in the temporal dimensions, while at the same time exploiting the constructive interference effect. Numerical results are presented to highlight the enhanced performance of the proposed scheme with respect to state of the art SLP techniques, in terms of power distribution and symbol error rate over non-linear channels

    Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Hardware Precoding Demonstration in Multi-Beam UHTS Communications under Realistic Payload Characteristics

    Get PDF
    In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic payload and channel impairments. We build the test-bed to demonstrate a real-time channel aided precoded transmission under realistic conditions such as the power constraints and satellite-payload non-linearities. We develop a scalable architecture of an SDR platform with the DVB-S2X piloting. The SDR platform consists of two parts: analog-to-digital (ADC) and digital-to-analog (DAC) converters preceded by radio frequency (RF) front-end and Field-Programmable Gate Array (FPGA) backend. The former introduces realistic impairments in the transmission chain such as carrier frequency and phase misalignments, quantization noise of multichannel ADC and DAC and non-linearities of RF components. It allows evaluating the performance of the precoded transmission in a more realistic environment rather than using only numerical simulations. We benchmark the performance of the communication standard in realistic channel scenarios, evaluate received signal SNR, and measure the actual channel throughput using LDPC codes

    Meeting IMT 2030 Performance Targets: The Potential of OTFDM Waveform and Structural MIMO Technologies

    Full text link
    The white paper focuses on several candidate technologies that could play a crucial role in the development of 6G systems. Two of the key technologies explored in detail are Orthogonal Time Frequency Division Multiplexing (OTFDM) waveform and Structural MIMO (S-MIMO)
    • …
    corecore