131 research outputs found

    Virtual Fixture Assistance for Suturing in Robot-Aided Pediatric Endoscopic Surgery

    Full text link
    The limited workspace in pediatric endoscopic surgery makes surgical suturing one of the most difficult tasks. During suturing, surgeons have to prevent collisions between tools and also collisions with the surrounding tissues. Surgical robots have been shown to be effective in adult laparoscopy, but assistance for suturing in constrained workspaces has not been yet fully explored. In this letter, we propose guidance virtual fixtures to enhance the performance and the safety of suturing while generating the required task constraints using constrained optimization and Cartesian force feedback. We propose two guidance methods: looping virtual fixtures and a trajectory guidance cylinder, that are based on dynamic geometric elements. In simulations and experiments with a physical robot, we show that the proposed methods achieve a more precise and safer looping in robot-assisted pediatric endoscopy.Comment: Accepted on RA-L/ICRA 2020, 8 Pages. Fixed a few typo

    Vision-Based Autonomous Control in Robotic Surgery

    Get PDF
    Robotic Surgery has completely changed surgical procedures. Enhanced dexterity, ergonomics, motion scaling, and tremor filtering, are well-known advantages introduced with respect to classical laparoscopy. In the past decade, robotic plays a fundamental role in Minimally Invasive Surgery (MIS) in which the da Vinci robotic system (Intuitive Surgical Inc., Sunnyvale, CA) is the most widely used system for robot-assisted laparoscopic procedures. Robots also have great potentiality in Microsurgical applications, where human limits are crucial and surgical sub-millimetric gestures could have enormous benefits with motion scaling and tremor compensation. However, surgical robots still lack advanced assistive control methods that could notably support surgeon's activity and perform surgical tasks in autonomy for a high quality of intervention. In this scenario, images are the main feedback the surgeon can use to correctly operate in the surgical site. Therefore, in view of the increasing autonomy in surgical robotics, vision-based techniques play an important role and can arise by extending computer vision algorithms to surgical scenarios. Moreover, many surgical tasks could benefit from the application of advanced control techniques, allowing the surgeon to work under less stressful conditions and performing the surgical procedures with more accuracy and safety. The thesis starts from these topics, providing surgical robots the ability to perform complex tasks helping the surgeon to skillfully manipulate the robotic system to accomplish the above requirements. An increase in safety and a reduction in mental workload is achieved through the introduction of active constraints, that can prevent the surgical tool from crossing a forbidden region and similarly generate constrained motion to guide the surgeon on a specific path, or to accomplish robotic autonomous tasks. This leads to the development of a vision-based method for robot-aided dissection procedure allowing the control algorithm to autonomously adapt to environmental changes during the surgical intervention using stereo images elaboration. Computer vision is exploited to define a surgical tools collision avoidance method that uses Forbidden Region Virtual Fixtures by rendering a repulsive force to the surgeon. Advanced control techniques based on an optimization approach are developed, allowing multiple tasks execution with task definition encoded through Control Barrier Functions (CBFs) and enhancing haptic-guided teleoperation system during suturing procedures. The proposed methods are tested on a different robotic platform involving da Vinci Research Kit robot (dVRK) and a new microsurgical robotic platform. Finally, the integration of new sensors and instruments in surgical robots are considered, including a multi-functional tool for dexterous tissues manipulation and different visual sensing technologies

    Online estimation of the hand-eye transformation from surgical scenes

    Full text link
    Hand-eye calibration algorithms are mature and provide accurate transformation estimations for an effective camera-robot link but rely on a sufficiently wide range of calibration data to avoid errors and degenerate configurations. To solve the hand-eye problem in robotic-assisted minimally invasive surgery and also simplify the calibration procedure by using neural network method cooporating with the new objective function. We present a neural network-based solution that estimates the transformation from a sequence of images and kinematic data which significantly simplifies the calibration procedure. The network utilises the long short-term memory architecture to extract temporal information from the data and solve the hand-eye problem. The objective function is derived from the linear combination of remote centre of motion constraint, the re-projection error and its derivative to induce a small change in the hand-eye transformation. The method is validated with the data from da Vinci Si and the result shows that the estimated hand-eye matrix is able to re-project the end-effector from the robot coordinate to the camera coordinate within 10 to 20 pixels of accuracy in both testing dataset. The calibration performance is also superior to the previous neural network-based hand-eye method. The proposed algorithm shows that the calibration procedure can be simplified by using deep learning techniques and the performance is improved by the assumption of non-static hand-eye transformations.Comment: 6 pages, 4 main figure

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    Automation of tissue piercing using circular needles and vision guidance for computer aided laparoscopic surgery

    Full text link
    Abstract—Despite the fact that minimally invasive robotic surgery provides many advantages for patients, such as reduced tissue trauma and shorter hospitalization, complex tasks (e.g. tissue piercing or knot-tying) are still time-consuming, error-prone and lead to quicker fatigue of the surgeon. Automating these recurrent tasks could greatly reduce total surgery time for patients and disburden the surgeon while he can focus on higher level challenges. This work tackles the problem of autonomous tissue piercing in robot-assisted laparoscopic surgery with a circular needle and general purpose surgical instruments. To command the instruments to an incision point, the surgeon utilizes a laser pointer to indicate the stitching area. A precise positioning of the needle is obtained by means of a switching visual servoing approach and the subsequent stitch is performed in a circular motion. Index Terms—robot surgery, minimally invasive surgery, tissue piercing, visual servoing I

    Dynamic Active Constraints for Surgical Robots using Vector Field Inequalities

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still underrepresented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this work, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.Comment: Accepted on T-RO 2019, 19 Page

    A Scalable, High-Performance, Real-Time Control Architecture with Application to Semi-Autonomous Teleoperation

    Get PDF
    A scalable and real-time capable infrastructure is required to enable high-performance control and haptic rendering of systems with many degrees-of-freedom. The specific platform that motivates this thesis work is the open research platform da Vinci ReResearch Kit (dVRK). For the system architecture, we propose a specialized IEEE-1394 (FireWire) broadcast protocol that takes advantage of broadcast and peer-to-peer transfers to minimize the number of transactions, and thus the software overhead, on the control PC, thereby enabling fast real-time control. It has also been extended to Ethernet via a novel Ethernet-to-FireWire bridge protocol. The software architecture consists of a distributed hardware interface layer, a real-time component-based software framework, and integration with the Robot Operating System (ROS). The architecture is scalable to support multiple active manipulators, reconfigurable to enable researchers to partition a full system into multiple independent subsystems, and extensible at all levels of control. This architecture has been applied to two semi-autonomous teleoperation applications. The first application is a suturing task in Robotic Minimally Invasive Surgery (RMIS), that includes the development of virtual fixtures for the needle passing and knot tying sub-tasks, with a multi-user study to verify their effectiveness. The second application concerns time-delayed teleoperation of a robotic arm for satellite servicing. The research contribution includes the development of a line virtual fixture with augmented reality, a test for different time delay configurations and a multi-user study that evaluates the effectiveness of the system
    • …
    corecore