4 research outputs found

    Towards an Efficient, Scalable Stream Query Operator Framework for Representing and Analyzing Continuous Fields

    Get PDF
    Advancements in sensor technology have made it less expensive to deploy massive numbers of sensors to observe continuous geographic phenomena at high sample rates and stream live sensor observations. This fact has raised new challenges since sensor streams have pushed the limits of traditional geo-sensor data management technology. Data Stream Engines (DSEs) provide facilities for near real-time processing of streams, however, algorithms supporting representing and analyzing Spatio-Temporal (ST) phenomena are limited. This dissertation investigates near real-time representation and analysis of continuous ST phenomena, observed by large numbers of mobile, asynchronously sampling sensors, using a DSE and proposes two novel stream query operator frameworks. First, the ST Interpolation Stream Query Operator Framework (STI-SQO framework) continuously transforms sensor streams into rasters using a novel set of stream query operators that perform ST-IDW interpolation. A key component of the STI-SQO framework is the 3D, main memory-based, ST Grid Index that enables high performance ST insertion and deletion of massive numbers of sensor observations through Isotropic Time Cell and Time Block-based partitioning. The ST Grid Index facilitates fast ST search for samples using ST shell-based neighborhood search templates, namely the Cylindrical Shell Template and Nested Shell Template. Furthermore, the framework contains the stream-based ST-IDW algorithms ST Shell and ST ak-Shell for high performance, parallel grid cell interpolation. Secondly, the proposed ST Predicate Stream Query Operator Framework (STP-SQO framework) efficiently evaluates value predicates over ST streams of ST continuous phenomena. The framework contains several stream-based predicate evaluation algorithms, including Region-Growing, Tile-based, and Phenomenon-Aware algorithms, that target predicate evaluation to regions with seed points and minimize the number of raster cells that are interpolated when evaluating value predicates. The performance of the proposed frameworks was assessed with regard to prediction accuracy of output results and runtime. The STI-SQO framework achieved a processing throughput of 250,000 observations in 2.5 s with a Normalized Root Mean Square Error under 0.19 using a 500Ă—500 grid. The STP-SQO framework processed over 250,000 observations in under 0.25 s for predicate results covering less than 40% of the observation area, and the Scan Line Region Growing algorithm was consistently the fastest algorithm tested

    Statistical Models for Querying and Managing Time-Series Data

    Get PDF
    In recent years we are experiencing a dramatic increase in the amount of available time-series data. Primary sources of time-series data are sensor networks, medical monitoring, financial applications, news feeds and social networking applications. Availability of large amount of time-series data calls for scalable data management techniques that enable efficient querying and analysis of such data in real-time and archival settings. Often the time-series data generated from sensors (environmental, RFID, GPS, etc.), are imprecise and uncertain in nature. Thus, it is necessary to characterize this uncertainty for producing clean answers. In this thesis we propose methods that address these important issues pertaining to time-series data. Particularly, this thesis is centered around the following three topics: Computing Statistical Measures on Large Time-Series Datasets. Computing statistical measures for large databases of time series is a fundamental primitive for querying and mining time-series data [31, 81, 97, 111, 132, 137]. This primitive is gaining importance with the increasing number and rapid growth of time-series databases. In Chapter 3, we introduce the Affinity framework for efficient computation of statistical measures by exploiting the concept of affine relationships [113, 114]. Affine relationships can be used to infer a large number of statistical measures for time series, from other related time series, instead of computing them directly; thus, reducing the overall computational cost significantly. Moreover, the Affinity framework proposes an unified approach for computing several statistical measures at once. Creating Probabilistic Databases from Imprecise Data. A large amount of time-series data produced in the real-world has an inherent element of uncertainty, arising due to the various sources of imprecision affecting its sources (like, sensor data, GPS trajectories, environmental monitoring data, etc.). The primary sources of imprecision in such data are: imprecise sensors, limited communication bandwidth, sensor failures, etc. Recently there has been an exponential rise in the number of such imprecise sensors, which has led to an explosion of imprecise data. Standard database techniques cannot be used to provide clean and consistent answers in such scenarios. Therefore, probabilistic databases that factor-in the inherent uncertainty and produce clean answers are required. An important assumption i while using probabilistic databases is that each data point has a probability distribution associated with it. This is not true in practice — the distributions are absent. As a solution to this fundamental limitation, in Chapter 4 we propose methods for inferring such probability distributions and using them for efficiently creating probabilistic databases [116]. Managing Participatory Sensing Data. Community-driven participatory sensing is a rapidly evolving paradigm in mobile geo-sensor networks. Here, sensors of various sorts (e.g., multi-sensor units monitoring air quality, cell phones, thermal watches, thermometers in vehicles, etc.) are carried by the community (public vehicles, private vehicles, or individuals) during their daily activities, collecting various types of data about their surrounding. Data generated by these devices is in large quantity, and geographically and temporally skewed. Therefore, it is important that systems designed for managing such data should be aware of these unique data characteristics. In Chapter 5, we propose the ConDense (Community-driven Sensing of the Environment) framework for managing and querying community-sensed data [5, 19, 115]. ConDense exploits spatial smoothness of environmental parameters (like, ambient pollution [5] or radiation [2]) to construct statistical models of the data. Since the number of constructed models is significantly smaller than the original data, we show that using our approach leads to dramatic increase in query processing efficiency [19, 115] and significantly reduces memory usage

    Spatiotemporal Wireless Sensor Network Field Approximation with Multilayer Perceptron Artificial Neural Network Models

    Get PDF
    As sensors become increasingly compact and dependable in natural environments, spatially-distributed heterogeneous sensor network systems steadily become more pervasive. However, any environmental monitoring system must account for potential data loss due to a variety of natural and technological causes. Modeling a natural spatial region can be problematic due to spatial nonstationarities in environmental variables, and as particular regions may be subject to specific influences at different spatial scales. Relationships between processes within these regions are often ephemeral, so models designed to represent them cannot remain static. Integrating temporal factors into this model engenders further complexity. This dissertation evaluates the use of multilayer perceptron neural network models in the context of sensor networks as a possible solution to many of these problems given their data-driven nature, their representational flexibility and straightforward fitting process. The relative importance of parameters is determined via an adaptive backpropagation training process, which converges to a best-fit model for sensing platforms to validate collected data or approximate missing readings. As conditions evolve over time such that the model can no longer adapt to changes, new models are trained to replace the old. We demonstrate accuracy results for the MLP generally on par with those of spatial kriging, but able to integrate additional physical and temporal parameters, enabling its application to any region with a collection of available data streams. Potential uses of this model might be not only to approximate missing data in the sensor field, but also to flag potentially incorrect, unusual or atypical data returned by the sensor network. Given the potential for spatial heterogeneity in a monitored phenomenon, this dissertation further explores the benefits of partitioning a space and applying individual MLP models to these partitions. A system of neural models using both spatial and temporal parameters can be envisioned such that a spatiotemporal space partitioned by k-means is modeled by k neural models with internal weightings varying individually according to the dominant processes within the assigned region of each. Evaluated on simulated and real data on surface currents of theGulf ofMaine, partitioned models show significant improved results over single global models
    corecore