67,382 research outputs found

    Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System

    Get PDF
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Socials. 2008In this study, spatial interpolation techniques have been applied to develop an objective climatic cartography of precipitation in the Iberian Peninsula (583,551 km2). The resulting maps have a 200m spatial resolution and a monthly temporal resolution. Multiple regression, combined with a residual correction method, has been used to interpolate the observed data collected from the meteorological stations. This method is attractive as it takes into account geographic information (independent variables) to interpolate the climatic data (dependent variable). Several models have been developed using different independent variables, applying several interpolation techniques and grouping the observed data into different subsets (drainage basin models) or into a single set (global model). Each map is provided with its associated accuracy, which is obtained through a simple regression between independent observed data and predicted values. This validation has shown that the most accurate results are obtained when using the global model with multiple regression mixed with the splines interpolation of the residuals. In this optimum case, the average R2 (mean of all the months) is 0.85. The entire process has been implemented in a GIS (Geographic Information System) which has greatly facilitated the filtering, querying, mapping and distributing of the final cartography

    Development of hight resolution gridded datasets of monthly temperature since 1916 for Spain

    Get PDF
    This article describes the methodology used in the Spanish State Meteorological Agency (AEMET) for obtaining gridded datasets of monthly minimum, maximum and mean temperature with 1 × 1 km spatial resolution for Spain, covering the period 1916-2018. These datasets have been created for climate analysis and monitoring, and will be updated periodically to extend the time coverage. The data used to produce the grids have undergone a quality control process in order to remove or correct erroneous data. The spatial interpolation method consists on a multiple linear regression with ordinary kriging of the regression residuals, using elevation, easting, northing and distance to the coast as independent variables in the regression. The performance of the interpolation method and the accuracy of the grids are evaluated using a cross-validation approach to estimate the errors. Some examples of derived products are shown, as well as a temperature analysis over the 1916-2018 period in Spain based on the gridded datasets

    Spatial interpolation of high-frequency monitoring data

    Full text link
    Climate modelers generally require meteorological information on regular grids, but monitoring stations are, in practice, sited irregularly. Thus, there is a need to produce public data records that interpolate available data to a high density grid, which can then be used to generate meteorological maps at a broad range of spatial and temporal scales. In addition to point predictions, quantifications of uncertainty are also needed. One way to accomplish this is to provide multiple simulations of the relevant meteorological quantities conditional on the observed data taking into account the various uncertainties in predicting a space-time process at locations with no monitoring data. Using a high-quality dataset of minute-by-minute measurements of atmospheric pressure in north-central Oklahoma, this work describes a statistical approach to carrying out these conditional simulations. Based on observations at 11 stations, conditional simulations were produced at two other sites with monitoring stations. The resulting point predictions are very accurate and the multiple simulations produce well-calibrated prediction uncertainties for temporal changes in atmospheric pressure but are substantially overconservative for the uncertainties in the predictions of (undifferenced) pressure.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS208 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data

    Get PDF
    We have developed a statistical gap-filling method adapted to the specific coverage and prop-erties of observed fugacity of surface ocean CO2(fCO2). We have used this method to interpolate the Sur-face Ocean CO2Atlas (SOCAT) v2 database on a 2.5832.58 global grid (south of 708N) for 1985–2011 atmonthly resolution. The method combines a spatial interpolation based on a ‘‘radius of influence’’ to deter-mine nearby similar fCO2values with temporal harmonic and cubic spline curve-fitting, and also fits long-term trends and seasonal cycles. Interannual variability is established using deviations of observations fromthe fitted trends and seasonal cycles. An uncertainty is computed for all interpolated values based on thespatial and temporal range of the interpolation. Tests of the method using model data show that it performsas well as or better than previous regional interpolation methods, but in addition it provides a near-globaland interannual coverage

    An Empirical Bayes Approach for Distributed Estimation of Spatial Fields

    Get PDF
    In this paper we consider a network of spatially distributed sensors which collect measurement samples of a spatial field, and aim at estimating in a distributed way (without any central coordinator) the entire field by suitably fusing all network data. We propose a general probabilistic model that can handle both partial knowledge of the physics generating the spatial field as well as a purely data-driven inference. Specifically, we adopt an Empirical Bayes approach in which the spatial field is modeled as a Gaussian Process, whose mean function is described by means of parametrized equations. We characterize the Empirical Bayes estimator when nodes are heterogeneous, i.e., perform a different number of measurements. Moreover, by exploiting the sparsity of both the covariance and the (parametrized) mean function of the Gaussian Process, we are able to design a distributed spatial field estimator. We corroborate the theoretical results with two numerical simulations: a stationary temperature field estimation in which the field is described by a partial differential (heat) equation, and a data driven inference in which the mean is parametrized by a cubic spline
    corecore