71 research outputs found

    Semantic categories underlying the meaning of ‘place’

    Get PDF
    This paper analyses the semantics of natural language expressions that are associated with the intuitive notion of ‘place’. We note that the nature of such terms is highly contested, and suggest that this arises from two main considerations: 1) there are a number of logically distinct categories of place expression, which are not always clearly distinguished in discourse about ‘place’; 2) the many non-substantive place count nouns (such as ‘place’, ‘region’, ‘area’, etc.) employed in natural language are highly ambiguous. With respect to consideration 1), we propose that place-related expressions should be classified into the following distinct logical types: a) ‘place-like’ count nouns (further subdivided into abstract, spatial and substantive varieties), b) proper names of ‘place-like’ objects, c) locative property phrases, and d) definite descriptions of ‘place-like’ objects. We outline possible formal representations for each of these. To address consideration 2), we examine meanings, connotations and ambiguities of the English vocabulary of abstract and generic place count nouns, and identify underlying elements of meaning, which explain both similarities and differences in the sense and usage of the various terms

    Interpreting Spatial Language in Image Captions

    Get PDF
    The map as a tool for accessing data has become very popular in recent years, but a lot of data do not have the necessary spatial meta-data to allow for that. Some data such as photographs however have spatial information in their captions and if this could be extracted, then they could be made available via map-based interfaces. Towards this goal, we introduce a model and spatio-linguistic reasoner for interpreting the spatial information in image captions that is based upon quantitative data about spatial language use acquired directly from people. Spatial language is inherently vague, and both the model and reasoner have been designed to incorporate this vagueness at the quantitative level and not only qualitatively

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work

    Personal Wayfinding Assistance

    Get PDF
    We are traveling many different routes every day. In familiar environments it is easy for us to find our ways. We know our way from bedroom to kitchen, from home to work, from parking place to office, and back home at the end of the working day. We have learned these routes in the past and are now able to find our destination without having to think about it. As soon as we want to find a place beyond the demarcations of our mental map, we need help. In some cases we ask our friends to explain us the way, in other cases we use a map to find out about the place. Mobile phones are increasingly equipped with wayfinding assistance. These devices are usually at hand because they are handy and small, which enables us to get wayfinding assistance everywhere where we need it. While the small size of mobile phones makes them handy, it is a disadvantage for displaying maps. Geographic information requires space to be visualized in order to be understandable. Typically, not all information displayed in maps is necessary. An example are walking ways in parks for car drivers, they are they are usually no relevant route options. By not displaying irrelevant information, it is possible to compress the map without losing important information. To reduce information purposefully, we need information about the user, the task at hand, and the environment it is embedded in. In this cumulative dissertation, I describe an approach that utilizes the prior knowledge of the user to adapt maps to the to the limited display options of mobile devices with small displays. I focus on central questions that occur during wayfinding and relate them to the knowledge of the user. This enables the generation of personal and context-specific wayfinding assistance in the form of maps which are optimized for small displays. To achieve personalized assistance, I present algorithmic methods to derive spatial user profiles from trajectory data. The individual profiles contain information about the places users regularly visit, as well as the traveled routes between them. By means of these profiles it is possible to generate personalized maps for partially familiar environments. Only the unfamiliar parts of the environment are presented in detail, the familiar parts are highly simplified. This bears great potential to minimize the maps, while at the same time preserving the understandability by including personally meaningful places as references. To ensure the understandability of personalized maps, we have to make sure that the names of the places are adapted to users. In this thesis, we study the naming of places and analyze the potential to automatically select and generate place names. However, personalized maps only work for environments the users are partially familiar with. If users need assistance for unfamiliar environments, they require complete information. In this thesis, I further present approaches to support uses in typical situations which can occur during wayfinding. I present solutions to communicate context information and survey knowledge along the route, as well as methods to support self-localization in case orientation is lost

    Fuzzy representation of vague spatial descriptions in real estate advertisements

    Get PDF
    International audienceGeocoding a spatial description is challenging since vernacular place names and vague spatial expressions give uncertainty and ambiguity to the description. Usually, digital gazetteers are used to match geospatial objects to their boundaries. However, gazetteers do not contain all places. Therefore, a number of studies have proposed to enrich gazetteers by estimating and representing the vernacular places. Nevertheless, only a few approaches have taken into account vague spatial expressions such as "nearby", and have represented geospatial objects as sharp boundaries. In this work, we present an automatic workflow to retrieve a location approximation of vague spatial description. We propose a model to estimate a fuzzy representation of each mentioned geospatial information and spatial expressions. Then, we perform information fusion to find a location approximation of a property. Lastly, we demonstrate our proposed method by applying it to the case of French Real Estate advertisements with two real-world datasets in Nice and Paris. Real Estate advertisements allow us to deal with uncertain geospatial objects since a vague and exaggerated property location's description is usually provided. Our results show that our proposed method is promising and able to correctly approximate a location from uncertain spatial descriptions

    HYBRID AUTOMATIC BUILDING INTERPRETATION SYSTEM

    Get PDF

    Spatial and temporal resolution of sensor observations

    Full text link
    Beobachtung ist ein Kernkonzept der Geoinformatik. Beobachtungen dienen bei Phänomenen wie Klimawandel, Massenbewegungen (z. B. Hangbewegungen) und demographischer Wandel zur Überwachung, Entwicklung von Modellen und Simulation dieser Erscheinungen. Auflösung ist eine zentrale Eigenschaft von Beobachtungen. Der Gebrauch von Beobachtungen unterschiedlicher Auflösung führt zu (potenziell) unterschiedlichen Entscheidungen, da die Auflösung der Beobachtungen das Erkennen von Strukturen während der Phase der Datenanalyse beeinflusst. Der Hauptbeitrag dieser Arbeit ist eine entwickelte Theorie der raum- und zeitlichen Auflösung von Beobachtungen, die sowohl auf technische Sensoren (z. B. Fotoapparat) als auch auf menschliche Sensoren anwendbar ist. Die Konsistenz der Theorie wurde anhand der Sprache Haskell evaluiert, und ihre praktische Anwendbarkeit wurde unter Einsatz von Beobachtungen des Webportals Flickr illustriert

    Dwelling on ontology - semantic reasoning over topographic maps

    Get PDF
    The thesis builds upon the hypothesis that the spatial arrangement of topographic features, such as buildings, roads and other land cover parcels, indicates how land is used. The aim is to make this kind of high-level semantic information explicit within topographic data. There is an increasing need to share and use data for a wider range of purposes, and to make data more definitive, intelligent and accessible. Unfortunately, we still encounter a gap between low-level data representations and high-level concepts that typify human qualitative spatial reasoning. The thesis adopts an ontological approach to bridge this gap and to derive functional information by using standard reasoning mechanisms offered by logic-based knowledge representation formalisms. It formulates a framework for the processes involved in interpreting land use information from topographic maps. Land use is a high-level abstract concept, but it is also an observable fact intimately tied to geography. By decomposing this relationship, the thesis correlates a one-to-one mapping between high-level conceptualisations established from human knowledge and real world entities represented in the data. Based on a middle-out approach, it develops a conceptual model that incrementally links different levels of detail, and thereby derives coarser, more meaningful descriptions from more detailed ones. The thesis verifies its proposed ideas by implementing an ontology describing the land use ‘residential area’ in the ontology editor Protégé. By asserting knowledge about high-level concepts such as types of dwellings, urban blocks and residential districts as well as individuals that link directly to topographic features stored in the database, the reasoner successfully infers instances of the defined classes. Despite current technological limitations, ontologies are a promising way forward in the manner we handle and integrate geographic data, especially with respect to how humans conceptualise geographic space

    Detecting geospatial location descriptions in natural language text

    Get PDF
    References to geographic locations are common in text data sources including social media and web pages. They take different forms from simple place names to relative expressions that describe location through a spatial relationship to a reference object (e.g. the house beside the Waikato River). Often complex, multi-word phrases are employed (e.g. the road and railway cross at right angles; the road in line with the canal) where spatial relationships are communicated with various parts of speech including prepositions, verbs, adverbs and adjectives. We address the problem of automatically detecting relative geospatial location descriptions, which we define as those that include spatial relation terms referencing geographic objects, and distinguishing them from non-geographical descriptions of location (e.g. the book on the table). We experiment with several methods for automated classification of text expressions, using features for machine learning that include bag of words that detect distinctive words, word embeddings that encode meanings of words and manually identified language patterns that characterise geospatial expressions. Using three data sets created for this study, we find that ensemble and meta-classifier approaches, that variously combine predictions from several other classifiers with data features, provide the best F-measure of 0.90 for detecting geospatial expressions
    • …
    corecore