1,942 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Blazes: Coordination Analysis for Distributed Programs

    Full text link
    Distributed consistency is perhaps the most discussed topic in distributed systems today. Coordination protocols can ensure consistency, but in practice they cause undesirable performance unless used judiciously. Scalable distributed architectures avoid coordination whenever possible, but under-coordinated systems can exhibit behavioral anomalies under fault, which are often extremely difficult to debug. This raises significant challenges for distributed system architects and developers. In this paper we present Blazes, a cross-platform program analysis framework that (a) identifies program locations that require coordination to ensure consistent executions, and (b) automatically synthesizes application-specific coordination code that can significantly outperform general-purpose techniques. We present two case studies, one using annotated programs in the Twitter Storm system, and another using the Bloom declarative language.Comment: Updated to include additional materials from the original technical report: derivation rules, output stream label

    Enabling autoscaling for in-memory storage in cluster computing framework

    Get PDF
    2019 Spring.Includes bibliographical references.IoT enabled devices and observational instruments continuously generate voluminous data. A large portion of these datasets are delivered with the associated geospatial locations. The increased volumes of geospatial data, alongside the emerging geospatial services, pose computational challenges for large-scale geospatial analytics. We have designed and implemented STRETCH , an in-memory distributed geospatial storage that preserves spatial proximity and enables proactive autoscaling for frequently accessed data. STRETCH stores data with a delayed data dispersion scheme that incrementally adds data nodes to the storage system. We have devised an autoscaling feature that proactively repartitions data to alleviate computational hotspots before they occur. We compared the performance of S TRETCH with Apache Ignite and the results show that STRETCH provides up to 3 times the throughput when the system encounters hotspots. STRETCH is built on Apache Spark and Ignite and interacts with them at runtime
    • …
    corecore