9,018 research outputs found

    Experimental Investigation of Radar Cross Section Spatial Correlation Properties for a Point Scattering Target

    Get PDF
    This research investigates the spatial correlation of RCS. In pulsed radar systems, probability of detection for partially correlated signals depends on the autocovariance of the target\u27s RCS. The RCS changes pulse to pulse due to spatial and time fluctuations. Spatial fluctuation are due to the motion of all scatterers relative to the radar (i.e. changing aspect angle). Time fluctuations are due to relative motion of scatterers to each other (i.e. wings flexing, engines spinning). Theory developed at AFIT [9] can generate autocovariance estimates from a distribution of scatterers. Theory based autocovariance estimates are compared to static measurement based autocovariance estimates in order to validate this theory. Interaction among scatterers is the most significant source of deviation between theory and measurement based autocovariance estimates

    Interacting electrons in a one-dimensional random array of scatterers - A Quantum Dynamics and Monte-Carlo study

    Full text link
    The quantum dynamics of an ensemble of interacting electrons in an array of random scatterers is treated using a new numerical approach for the calculation of average values of quantum operators and time correlation functions in the Wigner representation. The Fourier transform of the product of matrix elements of the dynamic propagators obeys an integral Wigner-Liouville-type equation. Initial conditions for this equation are given by the Fourier transform of the Wiener path integral representation of the matrix elements of the propagators at the chosen initial times. This approach combines both molecular dynamics and Monte Carlo methods and computes numerical traces and spectra of the relevant dynamical quantities such as momentum-momentum correlation functions and spatial dispersions. Considering as an application a system with fixed scatterers, the results clearly demonstrate that the many-particle interaction between the electrons leads to an enhancement of the conductivity and spatial dispersion compared to the noninteracting case.Comment: 10 pages and 8 figures, to appear in PRB April 1

    Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach

    Full text link
    Exact numerical calculations of the conductivity of graphene sheets with random and correlated distributions of disorders have been performed using the time-dependent real-space Kubo formalism. The disorder was modeled by the long-range Gaussian potential describing screened charged impurities and by the short-range potential describing neutral adatoms both in the weak and strong scattering regime. Our central result is that correlation in the spatial distribution for the strong short-range scatterers and for the long-range Gaussian potential do not lead to any enhancement of the conductivity in comparison to the uncorrelated case. Our results strongly indicate that the temperature enhancement of the conductivity reported in the recent study (Yan and Fuhrer, Phys. Rev. Lett. 107, 206601 (2011)) and attributed to the effect of dopant correlations was most likely caused by other factors not related to the correlations in the scattering potential.Comment: 14 pages, 10 figure

    Spatial correlations of the spontaneous decay rate as a probe of dense and correlated disordered materials

    Full text link
    We study theoretically and numerically a new kind of spatial correlation for waves in disordered media. We define CΓC_{\Gamma} as the correlation function of the fluorescent decay rate of an emitter at two different positions inside the medium. We show that the amplitude and the width of CΓC_{\Gamma} provide decoupled information on the structural correlation of the disordered medium and on the local environment of the emitter. This result may stimulate the emergence of new imaging and sensing modalities in complex media

    Conductivity of epitaxial and CVD graphene with correlated line defects

    Full text link
    Transport properties of single-layer graphene with correlated one-dimensional defects are studied using the time-dependent real-space Kubo-Greenwood formalism. Such defects are present in epitaxial graphene, comprising atomic terraces and steps due to the substrate morphology, and in polycrystalline chemically-vapor-deposited (CVD) graphene due to the grain boundaries, composed of a periodic array of dislocations, or quasi-periodic nanoripples originated from the metal substrate. The extended line defects are described by the long-range Lorentzian-type scattering potential. The dc conductivity is calculated numerically for different cases of distribution of line defects. This includes a random (uncorrelated) and a correlated distribution with a prevailing direction in the orientation of lines. The anisotropy of the conductivity along and across the line defects is revealed, which agrees with experimental measurements for epitaxial graphene grown on SiC. We performed a detailed study of the conductivity for different defect correlations, introducing the correlation angle alpha_max (i.e. the maximum possible angle between any two lines). We find that for a given electron density, the relative enhancement of the conductivity for the case of fully correlated line defects in comparison to the case of uncorrelated ones is larger for a higher defect density. Finally, we study the conductivity of realistic samples where both extended line defects as well as point-like scatterers such as adatoms and charged impurities are presented.Comment: 8 pages, 7 figure

    Capacity bounds and estimates for the finite scatterers MIMO wireless channel

    Get PDF
    We consider the limits to the capacity of the multiple-input–multiple-output wireless channel as modeled by the finite scatterers channel model, a generic model of the multipath channel which accounts for each individual multipath component. We assume a normalization that allows for the array gain due to multiple receive antenna elements and, hence, can obtain meaningful limits as the number of elements tends to infinity. We show that the capacity is upper bounded by the capacity of an identity channel of dimension equal to the number of scatterers. Because this bound is not very tight, we also determine an estimate of the capacity as the number of transmit/receive elements tends to infinity which is asymptotically accurate
    • …
    corecore