181 research outputs found

    Spatial Characteristics of Distortion Radiated from Antenna Arrays with Transceiver Nonlinearities

    Full text link
    The distortion from massive MIMO (multiple-input--multiple-output) base stations with nonlinear amplifiers is studied and its radiation pattern is derived. The distortion is analyzed both in-band and out-of-band. By using an orthogonal Hermite representation of the amplified signal, the spatial cross-correlation matrix of the nonlinear distortion is obtained. It shows that, if the input signal to the amplifiers has a dominant beam, the distortion is beamformed in the same way as that beam. When there are multiple beams without any one being dominant, it is shown that the distortion is practically isotropic. The derived theory is useful to predict how the nonlinear distortion will behave, to analyze the out-of-band radiation, to do reciprocity calibration, and to schedule users in the frequency plane to minimize the effect of in-band distortion

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Impact of Spatial Filtering on Distortion from Low-Noise Amplifiers in Massive MIMO Base Stations

    Full text link
    In massive MIMO base stations, power consumption and cost of the low-noise amplifiers (LNAs) can be substantial because of the many antennas. We investigate the feasibility of inexpensive, power efficient LNAs, which inherently are less linear. A polynomial model is used to characterize the nonlinear LNAs and to derive the second-order statistics and spatial correlation of the distortion. We show that, with spatial matched filtering (maximum-ratio combining) at the receiver, some distortion terms combine coherently, and that the SINR of the symbol estimates therefore is limited by the linearity of the LNAs. Furthermore, it is studied how the power from a blocker in the adjacent frequency band leaks into the main band and creates distortion. The distortion term that scales cubically with the power received from the blocker has a spatial correlation that can be filtered out by spatial processing and only the coherent term that scales quadratically with the power remains. When the blocker is in free-space line-of-sight and the LNAs are identical, this quadratic term has the same spatial direction as the desired signal, and hence cannot be removed by linear receiver processing

    Can Hardware Distortion Correlation be Neglected When Analyzing Uplink SE in Massive MIMO?

    Get PDF
    This paper analyzes how the distortion created by hardware impairments in a multiple-antenna base station affects the uplink spectral efficiency (SE), with focus on Massive MIMO. The distortion is correlated across the antennas, but has been often approximated as uncorrelated to facilitate (tractable) SE analysis. To determine when this approximation is accurate, basic properties of the distortion correlation are first uncovered. Then, we focus on third-order non-linearities and prove analytically and numerically that the correlation can be neglected in the SE analysis when there are many users. In i.i.d. Rayleigh fading with equal signal-to-noise ratios, this occurs when having five users.Comment: 5 pages, 3 figures, IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 201

    Out-of-Band Radiation from Antenna Arrays Clarified

    Get PDF
    Non-linearities in radio-frequency (RF) transceiver hardware, particularly in power amplifiers, cause distortion in-band and out-of-band. Contrary to claims made in recent literature, in a multiple-antenna system this distortion is correlated across the antennas in the array. A significant implication of this fact is that out-of-band emissions caused by non-linearities are beamformed, in some cases into the same direction as the useful signal.Comment: IEEE Wireless Communications Letters, 2018, to appea

    Caracterização não-linear de agregados de antenas para aplicações 5G

    Get PDF
    The present mobile scenario demands are stretching the existing telecom infrastructure to the limit. New technologies centred around antenna arrays and spatial multiplexing have been proposed to overcome the challenges imposed by these demands. This work overviews the mobile scenario, scrutinizing demands, presented solutions, challenges and the industry’s perspective of the Fifth Generation of mobile communications. From a careful analysis, the 5G’s most critical radio frequency hardware issues are detailed, and a long-term approach to address them is presented. On the short-term the work focuses on antenna characterization, because antennas are a central part of future wireless communications. Initially, basic antenna concepts are presented, then emphasis is given to microstrip antennas, going through all the steps of designing, optimizing and measuring a rectangular microstrip antenna and an eight element linear antenna array for 5.67GHz. Array features such as scanning and source synthesis are also explored. Finally, the impact of signal nonlinear distortion on the antenna array pattern is studied, aiming to expand state-of-the-art knowledge on how signal nonlinear distortion can limit spatial multiplexing. A theoretical model of the phenomenon is proposed and validated both by electromagnetic simulation and measurements.As crescentes exigências das redes móveis estão a levar a infraestrutura de telecomunicações ao seu limite. Novas tecnologias centradas em agregados de antenas e multiplexagem espacial têm sido propostas para ultrapassar os desafios impostos por tais exigências. Este trabalho apresenta uma visão abrangente das redes móveis atuais, escrutinando as suas exigências, as soluções apresentadas, os desafios adjacentes, bem como a opinião da indústria. Os problemas mais crı́ticos do hardware de radio frequência para a quinta geração de redes móveis são apurados a partir de uma análise detalhada do cenário das redes sem fios, sendo apresentado um plano a longo prazo para abordar estas problemáticas. A curto prazo o trabalho foca-se em caracterização de antenas, visto que as antenas são um ponto central nas comunicações sem fios do futuro. Inicialmente são apresentados conceitos básicos sobre antenas, dando-se de seguida ênfase às antenas microstrip, sendo apresentado todo o processo de sı́ntese, otimização e caracterização de uma antena microstrip retangular e de um agregado de antenas linear de oito elementos com frequência de operação 5.67GHz. Neste âmbito, algumas propriedades dos agregados, como o varrimento angular do feixe eletromagnético e técnicas de sı́ntese de fonte eletromagnética, são também exploradas. Finalmente, apresenta-se um estudo sobre o impacto que a distorção não linear de sinal pode ter no diagrama de radiação do agregado de antenas. O objetivo é expandir os conhecimentos do estado-da-arte acerca das limitações que a distorção não linear pode impor na multiplexagem espacial. Neste sentido, um modelo teórico descritivo deste fenómeno é proposto e validado por simulação eletromagnética e por medições experimentais.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Distortion-Aware Linear Precoding for Massive MIMO Downlink Systems with Nonlinear Power Amplifiers

    Full text link
    We introduce a framework for linear precoder design over a massive multiple-input multiple-output downlink system in the presence of nonlinear power amplifiers (PAs). By studying the spatial characteristics of the distortion, we demonstrate that conventional linear precoding techniques steer nonlinear distortions towards the users. We show that, by taking into account PA nonlinearity, one can design linear precoders that reduce, and in single-user scenarios, even completely remove the distortion transmitted in the direction of the users. This, however, is achieved at the price of a reduced array gain. To address this issue, we present precoder optimization algorithms that simultaneously take into account the effects of array gain, distortion, multiuser interference, and receiver noise. Specifically, we derive an expression for the achievable sum rate and propose an iterative algorithm that attempts to find the precoding matrix which maximizes this expression. Moreover, using a model for PA power consumption, we propose an algorithm that attempts to find the precoding matrix that minimizes the consumed power for a given minimum achievable sum rate. Our numerical results demonstrate that the proposed distortion-aware precoding techniques provide significant improvements in spectral and energy efficiency compared to conventional linear precoders.Comment: 30 pages, 10 figure
    corecore