11,946 research outputs found

    Constructing Fuzzy for Socio Economic Urban Growth Dynamic In Surabaya Based on GIS

    Get PDF
    Urban modeling is an important tool for efficient policy designing in a big city. Surabaya, a big city are now recognized as complex systems through which nonlinear and dynamic processes occur. The paper present a methodological framework for urban modeling from socio economic point of view, which suggested framework incorporates a set of fuzzy systems. In this case, the variable consist of manufacture, hospital, school and shopping centre. Combining with spatial analysis in GIS, the result is a dynamic model was shown to be capable of replicating the trends and characteristics of an urban environment, in this case the city of Surabaya

    Collaborative Mapping of London Using Google Maps: The LondonProfiler

    Get PDF
    This paper begins by reviewing the ways in which the innovation of Google Maps has transformed our ability to reference and view geographically referenced data. We describe the ways in which the GMap Creator tool developed under the ESRC National Centre for E Social Science programme enables users to ‘mashup’ thematic choropleth maps using the Google API. We illustrate the application of GMap Creator using the example of www.londonprofiler.org, which makes it possible to view a range of health, education and other socioeconomic datasets against a backcloth of Google Maps data. Our conclusions address the ways in which Google Map mashups developed using GMap Creator facilitate online exploratory cartographic visualisation in a range of areas of policy concern

    A spatial analysis of residential land prices in Belgium : accessibility, linguistic border and environmental amenities

    Get PDF
    This paper explores the spatial variation of land prices in Belgium. The originality of the methodology is threefold : (1) to work at the spatial extent of an entire country, (2) to compute several accessibility measures to all jobs and several representations of the environmental amenities and, more importantly, (3) to test the hypothesis that jobs influence land prices only in the same linguistic region. Spatial autocorrelation is accounted for by estimating spatial models. The results show that the linguistic border acts as a strong barrier in the spatial pattern of land prices and that environmental variables have no significant effect at this scale of spatial analysis.land price ; accessibility ; border effect ; environment ; Belgium

    A semantic and language-based representation of an environmental scene

    Get PDF
    The modeling of a landscape environment is a cognitive activity that requires appropriate spatial representations. The research presented in this paper introduces a structural and semantic categorization of a landscape view based on panoramic photographs that act as a substitute of a given natural environment. Verbal descriptions of a landscape scene provide themodeling input of our approach. This structure-based model identifies the spatial, relational, and semantic constructs that emerge from these descriptions. Concepts in the environment are qualified according to a semantic classification, their proximity and direction to the observer, and the spatial relations that qualify them. The resulting model is represented in a way that constitutes a modeling support for the study of environmental scenes, and a contribution for further research oriented to the mapping of a verbal description onto a geographical information system-based representation

    Creation of regions for dialect features using a cellular automaton

    Get PDF
    An issue in dialect research has been how to make generalizations from survey data about where some dialect feature might be found. Pre-computational methods included drawing isoglosses or using shadings to indicate areas where an analyst expected a feature to be found. The use of computers allowed for faster plotting of locations where any given feature had been e¬licited, and also allowed for the use of statistical techniques from technical geography to estimate regions where particular features might be found. However, using the computer did not make the analysis less subjective than isoglosses, and statistical methods from technical geography have turned out to be limited in use. We have prepared a cellular automaton (CA) for use with data collected for the Linguistic Atlas Project that can address the problems involved in this type of data visualization. The CA plots the locations where survey data was elicited, and then through the application of rules creates an estimate of the spatial distributions of selected features. The application of simple rules allows the CA to create objective and reproducible estimates based on the data it was given, without the use of statistical methods

    GIS-based modeling of land use systems - Common Agricultural Policy reform and its impact on agricultural land use and plant species richness

    Get PDF
    An assessment of agricultural policy measures and their sustainability needs to consider economic, social, and ecological aspects. The current paradigm shift of the European Union’s Common Agricultural Policy (CAP) from coupled to decoupled transfer payments calls for such an evaluation. Land users have to reevaluate their production program and its spatial allocation. Consequently, agricultural policy influences regional land use patterns and shares of land use systems, which in turn influence regional plant species richness. Connecting land use and ecological models allows to assess socioeconomic and ecologic effects of policy measures by identifying interactions and estimating potential trade-offs. The paper presents the land use model ProLand and the fuzzy expert system UPAL. ProLand models the regional distribution of land use systems while UPAL predicts plant species richness. The models are connected through a GIS and applied to a study area in Hesse, Germany, in order to simulate the effects of changing conditions on land use, economic and social key indicators, and plant species richness. ProLand is a spatially explicit comparative static model that simulates a region’s land use pattern based on natural, socioeconomic, political, and technological parameters. The model assumes land rent maximizing behavior of land users. It calculates and assigns the land rent maximizing land use system for every investigated decision unit, generally a field. A land use system is characterized through crop rotation, corresponding outdoor operations, animal husbandry if applicable, and the relevant political and socioeconomic attributes. The fuzzy expert system derives the values of ecologically relevant parameters from several site specific attributes and land use operations. Land use dependent site characteristics that influence plant species richness are derived from predictions generated by ProLand. Detailed information on crop rotation, fertilization and pesticide strategy, and outdoor operations are considered. The expert system then classifies natural and land use dependent site characteristics into aggregate factors. Based on a set of rules it assigns the number of species to the classes and thus to the decision units. Simulation results for the study area show that the CAP reform causes a rise in grassland area. These land use changes mainly occur in areas currently used for arable farming but with natural conditions favoring grassland. Plant species richness is positively influenced by the increase in extensive grassland area.

    An Introduction to Ontology

    Get PDF
    Analytical philosophy of the last one hundred years has been heavily influenced by a doctrine to the effect that one can arrive at a correct ontology by paying attention to certain superficial (syntactic) features of first-order predicate logic as conceived by Frege and Russell. More specifically, it is a doctrine to the effect that the key to the ontological structure of reality is captured syntactically in the ‘Fa’ (or, in more sophisticated versions, in the ‘Rab’) of first-order logic, where ‘F’ stands for what is general in reality and ‘a’ for what is individual. Hence “f(a)ntology”. Because predicate logic has exactly two syntactically different kinds of referring expressions—‘F’, ‘G’, ‘R’, etc., and ‘a’, ‘b’, ‘c’, etc.—so reality must consist of exactly two correspondingly different kinds of entity: the general (properties, concepts) and the particular (things, objects), the relation between these two kinds of entity being revealed in the predicate-argument structure of atomic formulas in first-order logic

    Characterizing urban landscapes using fuzzy sets

    Get PDF
    Characterizing urban landscapes is important given the present and future projections of global population that favor urban growth. The definition of “urban” on a thematic map has proven to be problematic since urban areas are heterogeneous in terms of land use and land cover. Further, certain urban classes are inherently imprecise due to the difficulty in integrating various social and environmental inputs into a precise definition. Social components often include demographic patterns, transportation, building type and density while ecological components include soils, elevation, hydrology, climate, vegetation and tree cover. In this paper, we adopt a coupled human and natural system (CHANS) integrated scientific framework for characterizing urban landscapes. We implement the framework by adopting a fuzzy sets concept of “urban characterization” since fuzzy sets relate to classes of object with imprecise boundaries in which membership is a matter of degree. For dynamic mapping applications, user-defined classification schemes involving rules combining different social and ecological inputs can lead to a degree of quantification in class labeling varying from “highly urban” to “least urban”. A socio-economic perspective of urban may include threshold values for population and road network density while a more ecological perspective of urban may utilize the ratio of natural versus built area and percent forest cover. Threshold values are defined to derive the fuzzy rules of membership, in each case, and various combinations of rules offer a greater flexibility to characterize the many facets of the urban landscape. We illustrate the flexibility and utility of this fuzzy inference approach called the Fuzzy Urban Index for the Boston Metro region with five inputs and eighteen rules. The resulting classification map shows levels of fuzzy membership ranging from highly urban to least urban or rural in the Boston study region. We validate our approach using two experts assessing accuracy of the resulting fuzzy urban map. We discuss how our approach can be applied in other urban contexts with newly emerging descriptors of urban sustainability, urban ecology and urban metabolism.This research was partially supported by "Boston University Initiative on Cities Early Stage Urban Research Awards 2015-16" (Gopal & Phillips) and the Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. (Boston University Initiative on Cities Early Stage Urban Research Awards; Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University)https://doi.org/10.1016/j.compenvurbsys.2016.02.002Published versio

    Determining geometric primitives for a 3D GIS : easy as 1D, 2D, 3D?

    Get PDF
    Acquisition techniques such as photo modelling, using SfM-MVS algorithms, are being applied increasingly in several fields of research and render highly realistic and accurate 3D models. Nowadays, these 3D models are mainly deployed for documentation purposes. As these data generally encompass spatial data, the development of a 3D GIS would allow researchers to use these 3D models to their full extent. Such a GIS would allow a more elaborate analysis of these 3D models and thus support the comprehension of the objects that the features in the model represent. One of the first issues that has to be tackled in order to make the resulting 3D models compatible for implementation in a 3D GIS is the choice of a certain geometric primitive to spatially represent the input data. The chosen geometric primitive will not only influence the visualisation of the data, but also the way in which the data can be stored, exchanged, manipulated, queried and understood. Geometric primitives can be one-, two- and three-dimensional. By adding an extra dimension, the complexity of the data increases, but the user is allowed to understand the original situation more intuitively. This research paper tries to give an initial analysis of 1D, 2D and 3D primitives in the framework of the integration of SfM-MVS based 3D models in a 3D GIS
    corecore