39 research outputs found

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    Qualitative Spatial Query Processing : Towards Cognitive Geographic Information Systems

    Get PDF
    For a long time, Geographic Information Systems (GISs) have been used by GIS-experts to perform numerous tasks including way finding, mapping, and querying geo-spatial databases. The advancement of Web 2.0 technologies and the development of mobile-based device applications present an excellent opportunity to allow the public -non-expert users- to access information of GISs. However, the interfaces of GISs were mainly designed and developed based on quantitative values of spatial databases to serve GIS-experts, whereas non-expert users usually prefer a qualitative approach to interacting with GISs. For example, humans typically resort to expressions such as the building is near a riverbank or there is a restaurant inside a park which qualitatively locate the spatial entity with respect to another. In other words, the users' interaction with current GISs is still not intuitive and not efficient. This dissertation thusly aims at enabling users to intuitively and efficiently search spatial databases of GISs by means of qualitative relations or terms such as left, north of, or inside. We use these qualitative relations to formalise so-called Qualitative Spatial Queries (QSQs). Aside from existing topological models, we integrate distance and directional qualitative models into Spatial Data-Base Management Systems (SDBMSs) to allow the qualitative and intuitive formalism of queries in GISs. Furthermore, we abstract binary Qualitative Spatial Relations (QSRs) covering the aforementioned aspects of space from the database objects. We store the abstracted QSRs in a Qualitative Spatial Layer (QSL) that we extend into current SDBMSs to avoid the additional cost of the abstraction process when dealing with every single query. Nevertheless, abstracting the QSRs of QSL results in a high space complexity in terms of qualitative representations

    Formal extension of the relational model for the management of spatial and spatio-temporal data

    Get PDF
    [Resumen] En los últioms años, se ha realizado un gran esfuerzo investigador en la manipulación de datos especiales y Sistemas de Información Geográfica (SIG). Una clara limitación de las primeras aproximaciones es la falta de integración entre datos geográficos y alfanuméricos. Para resolver esto surge el área de Bases de Datos Espaciales. Los problemas que aparecen en este campo son muchos y complejos. Un primer ejemplo son las peculiaridades de las operaciones espaciales, como el calculo de la intersección espacial de dos superficies. Otro ejemplo es el elegir las estructuras de datos apropiadas (relaciones, capas, etc.) y el conjunto de operaciones adeucado. La combinación con las Bases de Datos Temporales da lugar a las Bases de Datos Espacio-temporales, en las que la inclusión de la dimensión temporal complica más los problemas anteriores. A pesar de la gran cantidad de aproximaciones propuestas, no se ha llegado todavía a una solución satisfactoria. La presente tesis propone una nueva solución que resuelve todos los problemas de modelado de datos espaciales y espacio-temporales resaltados arriba. Parte del trabajo se completó durante el proyecto ""CHOROCRONOS"": A Research Network for Saptiotemporal Database Systems"", financiado por la Unión Europea. El modelo propuesto en la tesis define tres tipos de dato punto, línea y superficie, que encajan perfectamente en la percepción humana. La definición de estos tipos de dato se basa en la definición previa de Quanta Espacial. Las estructuras de datos usadas son las relaciones no anidadas de modelo relacional puro. El conjunto de operaciones relacionales permite alcanzar casi por completo la funcionalidad propuesta en otros modelos. Todas las operaciones han sido definidas en base a un núcleo reducido de operaciones primitvas. Todos los tipos de datos, espaciales, espacio-temporales y convencionales se manipulan de forma uniforme con este conjunto de operaciones

    Multidimensional access methods

    Full text link

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    Spatial Database Support for Virtual Engineering

    Get PDF
    The development, design, manufacturing and maintenance of modern engineering products is a very expensive and complex task. Shorter product cycles and a greater diversity of models are becoming decisive competitive factors in the hard-fought automobile and plane market. In order to support engineers to create complex products when being pressed for time, systems are required which answer collision and similarity queries effectively and efficiently. In order to achieve industrial strength, the required specialized functionality has to be integrated into fully-fledged database systems, so that fundamental services of these systems can be fully reused, including transactions, concurrency control and recovery. This thesis aims at the development of theoretical sound and practical realizable algorithms which effectively and efficiently detect colliding and similar complex spatial objects. After a short introductory Part I, we look in Part II at different spatial index structures and discuss their integrability into object-relational database systems. Based on this discussion, we present two generic approaches for accelerating collision queries. The first approach exploits available statistical information in order to accelerate the query process. The second approach is based on a cost-based decompositioning of complex spatial objects. In a broad experimental evaluation based on real-world test data sets, we demonstrate the usefulness of the presented techniques which allow interactive query response times even for large data sets of complex objects. In Part III of the thesis, we discuss several similarity models for spatial objects. We show by means of a new evaluation method that data-partitioning similarity models yield more meaningful results than space-partitioning similarity models. We introduce a very effective similarity model which is based on a new paradigm in similarity search, namely the use of vector set represented objects. In order to guarantee efficient query processing, suitable filters are introduced for accelerating similarity queries on complex spatial objects. Based on clustering and the introduced similarity models we present an industrial prototype which helps the user to navigate through massive data sets.Ein schneller und reibungsloser Entwicklungsprozess neuer Produkte ist ein wichtiger Faktor für den wirtschaftlichen Erfolg vieler Unternehmen insbesondere aus der Luft- und Raumfahrttechnik und der Automobilindustrie. Damit Ingenieure in immer kürzerer Zeit immer anspruchsvollere Produkte entwickeln können, werden effektive und effiziente Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten benötigt. Um den hohen Anforderungen eines produktiven Einsatzes zu genügen, müssen entsprechend spezialisierte Zugriffsmethoden in vollwertige Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie Trans-aktionen, kontrollierte Nebenläufigkeit und Wiederanlauf sichergestellt sind. Ziel dieser Doktorarbeit ist es deshalb, effektive und effiziente Algorithmen für Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten zu ent-wickeln und diese in kommerzielle Objekt-Relationale Datenbanksysteme zu integrieren. Im ersten Teil der Arbeit werden verschiedene räumliche Indexstrukturen zur effizienten Bearbeitung von Kollisionsanfragen diskutiert und auf ihre Integrationsfähigkeit in Objekt-Relationale Datenbanksysteme hin untersucht. Daran an-knüpfend werden zwei generische Verfahren zur Beschleunigung von Kollisionsanfragen vorgestellt. Das erste Verfahren benutzt statistische Informationen räumlicher Indexstrukturen, um eine gegebene Anfrage zu beschleunigen. Das zweite Verfahren beruht auf einer kostenbasierten Zerlegung komplexer räumlicher Datenbank- Objekte. Diese beiden Verfahren ergänzen sich gegenseitig und können unabhängig voneinander oder zusammen eingesetzt werden. In einer ausführlichen experimentellen Evaluation wird gezeigt, dass die beiden vorgestellten Verfahren interaktive Kollisionsanfragen auf umfangreichen Datenmengen und komplexen Objekten ermöglichen. Im zweiten Teil der Arbeit werden verschiedene Ähnlichkeitsmodelle für räum-liche Objekte vorgestellt. Es wird experimentell aufgezeigt, dass datenpartitionierende Modelle effektiver sind als raumpartitionierende Verfahren. Weiterhin werden geeignete Filtertechniken zur Beschleunigung des Anfrageprozesses entwickelt und experimentell untersucht. Basierend auf Clustering und den entwickelten Ähnlichkeitsmodellen wird ein industrietauglicher Prototyp vorgestellt, der Benutzern hilft, durch große Datenmengen zu navigieren

    Foveation for 3D visualization and stereo imaging

    Get PDF
    Even though computer vision and digital photogrammetry share a number of goals, techniques, and methods, the potential for cooperation between these fields is not fully exploited. In attempt to help bridging the two, this work brings a well-known computer vision and image processing technique called foveation and introduces it to photogrammetry, creating a hybrid application. The results may be beneficial for both fields, plus the general stereo imaging community, and virtual reality applications. Foveation is a biologically motivated image compression method that is often used for transmitting videos and images over networks. It is possible to view foveation as an area of interest management method as well as a compression technique. While the most common foveation applications are in 2D there are a number of binocular approaches as well. For this research, the current state of the art in the literature on level of detail, human visual system, stereoscopic perception, stereoscopic displays, 2D and 3D foveation, and digital photogrammetry were reviewed. After the review, a stereo-foveation model was constructed and an implementation was realized to demonstrate a proof of concept. The conceptual approach is treated as generic, while the implementation was conducted under certain limitations, which are documented in the relevant context. A stand-alone program called Foveaglyph is created in the implementation process. Foveaglyph takes a stereo pair as input and uses an image matching algorithm to find the parallax values. It then calculates the 3D coordinates for each pixel from the geometric relationships between the object and the camera configuration or via a parallax function. Once 3D coordinates are obtained, a 3D image pyramid is created. Then, using a distance dependent level of detail function, spherical volume rings with varying resolutions throughout the 3D space are created. The user determines the area of interest. The result of the application is a user controlled, highly compressed non-uniform 3D anaglyph image. 2D foveation is also provided as an option. This type of development in a photogrammetric visualization unit is beneficial for system performance. The research is particularly relevant for large displays and head mounted displays. Although, the implementation, because it is done for a single user, would possibly be best suited to a head mounted display (HMD) application. The resulting stereo-foveated image can be loaded moderately faster than the uniform original. Therefore, the program can potentially be adapted to an active vision system and manage the scene as the user glances around, given that an eye tracker determines where exactly the eyes accommodate. This exploration may also be extended to robotics and other robot vision applications. Additionally, it can also be used for attention management and the viewer can be directed to the object(s) of interest the demonstrator would like to present (e.g. in 3D cinema). Based on the literature, we also believe this approach should help resolve several problems associated with stereoscopic displays such as the accommodation convergence problem and diplopia. While the available literature provides some empirical evidence to support the usability and benefits of stereo foveation, further tests are needed. User surveys related to the human factors in using stereo foveated images, such as its possible contribution to prevent user discomfort and virtual simulator sickness (VSS) in virtual environments, are left as future work.reviewe
    corecore