186 research outputs found

    Orthonormal Expansion l1-Minimization Algorithms for Compressed Sensing

    Full text link
    Compressed sensing aims at reconstructing sparse signals from significantly reduced number of samples, and a popular reconstruction approach is β„“1\ell_1-norm minimization. In this correspondence, a method called orthonormal expansion is presented to reformulate the basis pursuit problem for noiseless compressed sensing. Two algorithms are proposed based on convex optimization: one exactly solves the problem and the other is a relaxed version of the first one. The latter can be considered as a modified iterative soft thresholding algorithm and is easy to implement. Numerical simulation shows that, in dealing with noise-free measurements of sparse signals, the relaxed version is accurate, fast and competitive to the recent state-of-the-art algorithms. Its practical application is demonstrated in a more general case where signals of interest are approximately sparse and measurements are contaminated with noise.Comment: 7 pages, 2 figures, 1 tabl

    On Phase Transition of Compressed Sensing in the Complex Domain

    Full text link
    The phase transition is a performance measure of the sparsity-undersampling tradeoff in compressed sensing (CS). This letter reports our first observation and evaluation of an empirical phase transition of the β„“1\ell_1 minimization approach to the complex valued CS (CVCS), which is positioned well above the known phase transition of the real valued CS in the phase plane. This result can be considered as an extension of the existing phase transition theory of the block-sparse CS (BSCS) based on the universality argument, since the CVCS problem does not meet the condition required by the phase transition theory of BSCS but its observed phase transition coincides with that of BSCS. Our result is obtained by applying the recently developed ONE-L1 algorithms to the empirical evaluation of the phase transition of CVCS.Comment: 4 pages, 3 figure

    Message Passing Algorithms for Compressed Sensing

    Full text link
    Compressed sensing aims to undersample certain high-dimensional signals, yet accurately reconstruct them by exploiting signal characteristics. Accurate reconstruction is possible when the object to be recovered is sufficiently sparse in a known basis. Currently, the best known sparsity-undersampling tradeoff is achieved when reconstructing by convex optimization -- which is expensive in important large-scale applications. Fast iterative thresholding algorithms have been intensively studied as alternatives to convex optimization for large-scale problems. Unfortunately known fast algorithms offer substantially worse sparsity-undersampling tradeoffs than convex optimization. We introduce a simple costless modification to iterative thresholding making the sparsity-undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures. The new iterative-thresholding algorithms are inspired by belief propagation in graphical models. Our empirical measurements of the sparsity-undersampling tradeoff for the new algorithms agree with theoretical calculations. We show that a state evolution formalism correctly derives the true sparsity-undersampling tradeoff. There is a surprising agreement between earlier calculations based on random convex polytopes and this new, apparently very different theoretical formalism.Comment: 6 pages paper + 9 pages supplementary information, 13 eps figure. Submitted to Proc. Natl. Acad. Sci. US

    DeepCodec: Adaptive Sensing and Recovery via Deep Convolutional Neural Networks

    Full text link
    In this paper we develop a novel computational sensing framework for sensing and recovering structured signals. When trained on a set of representative signals, our framework learns to take undersampled measurements and recover signals from them using a deep convolutional neural network. In other words, it learns a transformation from the original signals to a near-optimal number of undersampled measurements and the inverse transformation from measurements to signals. This is in contrast to traditional compressive sensing (CS) systems that use random linear measurements and convex optimization or iterative algorithms for signal recovery. We compare our new framework with β„“1\ell_1-minimization from the phase transition point of view and demonstrate that it outperforms β„“1\ell_1-minimization in the regions of phase transition plot where β„“1\ell_1-minimization cannot recover the exact solution. In addition, we experimentally demonstrate how learning measurements enhances the overall recovery performance, speeds up training of recovery framework, and leads to having fewer parameters to learn

    COMPRESSIVE PARAMETER ESTIMATION VIA APPROXIMATE MESSAGE PASSING

    Get PDF
    The literature on compressive parameter estimation has been mostly focused on the use of sparsity dictionaries that encode a discretized sampling of the parameter space; these dictionaries, however, suffer from coherence issues that must be controlled for successful estimation. To bypass such issues with discretization, we propose the use of statistical parameter estimation methods within the Approximate Message Passing (AMP) algorithm for signal recovery. Our method leverages the recently proposed use of custom denoisers in place of the usual thresholding steps (which act as denoisers for sparse signals) in AMP. We introduce the design of analog denoisers that are based on statistical parameter estimation algorithms, and we focus on two commonly used examples: frequency estimation and bearing estimation, coupled with the Root MUSIC estimation algorithm. We first analyze the performance of the proposed analog denoiser for signal recovery, and then link the performance in signal estimation to that of parameter estimation. Numerical experiments show significant improvements in estimation performance versus previously proposed approaches for compressive parameter estimation
    • …
    corecore