15,627 research outputs found

    A Sparsity-Aware Adaptive Algorithm for Distributed Learning

    Get PDF
    In this paper, a sparsity-aware adaptive algorithm for distributed learning in diffusion networks is developed. The algorithm follows the set-theoretic estimation rationale. At each time instance and at each node of the network, a closed convex set, known as property set, is constructed based on the received measurements; this defines the region in which the solution is searched for. In this paper, the property sets take the form of hyperslabs. The goal is to find a point that belongs to the intersection of these hyperslabs. To this end, sparsity encouraging variable metric projections onto the hyperslabs have been adopted. Moreover, sparsity is also imposed by employing variable metric projections onto weighted â„“1\ell_1 balls. A combine adapt cooperation strategy is adopted. Under some mild assumptions, the scheme enjoys monotonicity, asymptotic optimality and strong convergence to a point that lies in the consensus subspace. Finally, numerical examples verify the validity of the proposed scheme, compared to other algorithms, which have been developed in the context of sparse adaptive learning

    Diffusion Adaptation Strategies for Distributed Estimation over Gaussian Markov Random Fields

    Full text link
    The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real-time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1206.309
    • …
    corecore