35 research outputs found

    The Affine Uncertainty Principle, Associated Frames and Applications in Signal Processing

    Get PDF
    Uncertainty relations play a prominent role in signal processing, stating that a signal can not be simultaneously concentrated in the two related domains of the corresponding phase space. In particular, a new uncertainty principle for the affine group, which is directly related to the wavelet transform has lead to a new minimizing waveform. In this thesis, a frame construction is proposed which leads to approximately tight frames based on this minimizing waveform. Frame properties such as the diagonality of the frame operator as well as lower and upper frame bounds are analyzed. Additionally, three applications of such frame constructions are introduced: inpainting of missing audio data, detection of neuronal spikes in extracellular recorded data and peak detection in MALDI imaging data

    Learning to Warm-Start Fixed-Point Optimization Algorithms

    Full text link
    We introduce a machine-learning framework to warm-start fixed-point optimization algorithms. Our architecture consists of a neural network mapping problem parameters to warm starts, followed by a predefined number of fixed-point iterations. We propose two loss functions designed to either minimize the fixed-point residual or the distance to a ground truth solution. In this way, the neural network predicts warm starts with the end-to-end goal of minimizing the downstream loss. An important feature of our architecture is its flexibility, in that it can predict a warm start for fixed-point algorithms run for any number of steps, without being limited to the number of steps it has been trained on. We provide PAC-Bayes generalization bounds on unseen data for common classes of fixed-point operators: contractive, linearly convergent, and averaged. Applying this framework to well-known applications in control, statistics, and signal processing, we observe a significant reduction in the number of iterations and solution time required to solve these problems, through learned warm starts

    Structured Tensor Recovery and Decomposition

    Get PDF
    Tensors, a.k.a. multi-dimensional arrays, arise naturally when modeling higher-order objects and relations. Among ubiquitous applications including image processing, collaborative filtering, demand forecasting and higher-order statistics, there are two recurring themes in general: tensor recovery and tensor decomposition. The first one aims to recover the underlying tensor from incomplete information; the second one is to study a variety of tensor decompositions to represent the array more concisely and moreover to capture the salient characteristics of the underlying data. Both topics are respectively addressed in this thesis. Chapter 2 and Chapter 3 focus on low-rank tensor recovery (LRTR) from both theoretical and algorithmic perspectives. In Chapter 2, we first provide a negative result to the sum of nuclear norms (SNN) model---an existing convex model widely used for LRTR; then we propose a novel convex model and prove this new model is better than the SNN model in terms of the number of measurements required to recover the underlying low-rank tensor. In Chapter 3, we first build up the connection between robust low-rank tensor recovery and the compressive principle component pursuit (CPCP), a convex model for robust low-rank matrix recovery. Then we focus on developing convergent and scalable optimization methods to solve the CPCP problem. In specific, our convergent method, proposed by combining classical ideas from Frank-Wolfe and proximal methods, achieves scalability with linear per-iteration cost. Chapter 4 generalizes the successive rank-one approximation (SROA) scheme for matrix eigen-decomposition to a special class of tensors called symmetric and orthogonally decomposable (SOD) tensor. We prove that the SROA scheme can robustly recover the symmetric canonical decomposition of the underlying SOD tensor even in the presence of noise. Perturbation bounds, which can be regarded as a higher-order generalization of the Davis-Kahan theorem, are provided in terms of the noise magnitude

    Acceleration Methods for MRI

    Full text link
    Acceleration methods are a critical area of research for MRI. Two of the most important acceleration techniques involve parallel imaging and compressed sensing. These advanced signal processing techniques have the potential to drastically reduce scan times and provide radiologists with new information for diagnosing disease. However, many of these new techniques require solving difficult optimization problems, which motivates the development of more advanced algorithms to solve them. In addition, acceleration methods have not reached maturity in some applications, which motivates the development of new models tailored to these applications. This dissertation makes advances in three different areas of accelerations. The first is the development of a new algorithm (called B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithm or BARISTA), that solves a parallel MRI optimization problem with compressed sensing assumptions. BARISTA is shown to be 2-3 times faster and more robust to parameter selection than current state-of-the-art variable splitting methods. The second contribution is the extension of BARISTA ideas to non-Cartesian trajectories that also leads to a 2-3 times acceleration over previous methods. The third contribution is the development of a new model for functional MRI that enables a 3-4 factor of acceleration of effective temporal resolution in functional MRI scans. Several variations of the new model are proposed, with an ROC curve analysis showing that a combination low-rank/sparsity model giving the best performance in identifying the resting-state motor network.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120841/1/mmuckley_1.pd
    corecore