163 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Momentum-inspired Low-Rank Coordinate Descent for Diagonally Constrained SDPs

    Full text link
    We present a novel, practical, and provable approach for solving diagonally constrained semi-definite programming (SDP) problems at scale using accelerated non-convex programming. Our algorithm non-trivially combines acceleration motions from convex optimization with coordinate power iteration and matrix factorization techniques. The algorithm is extremely simple to implement, and adds only a single extra hyperparameter -- momentum. We prove that our method admits local linear convergence in the neighborhood of the optimum and always converges to a first-order critical point. Experimentally, we showcase the merits of our method on three major application domains: MaxCut, MaxSAT, and MIMO signal detection. In all cases, our methodology provides significant speedups over non-convex and convex SDP solvers -- 5X faster than state-of-the-art non-convex solvers, and 9 to 10^3 X faster than convex SDP solvers -- with comparable or improved solution quality.Comment: 10 pages, 8 figures, preprint under revie

    Low PAPR Pilot for Delay-Doppler Domain Modulation

    Full text link
    This paper studies the low PAPR pilot design in delay-Doppler domain modulation. We adopt a sequence based pilot design instead of the conventional pulse pilot, to mitigate the PAPR issue. We develop simple channel estimation algorithm composes of two-stages which are path identification and channel coefficient estimation. The quantitative analysis on the channel estimation error model is provided. Based on which the principle of pilot sequence design in delay-Doppler domain is revealed. Experiment results shows that the proposed scheme maintains a relatively low PAPR in time domain samples, while the channel estimation performance approaches the ideal channel estimation in limited-Doppler-Shift channel model

    Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network

    Full text link
    The limited fronthaul capacity imposes a challenge on the uplink of centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of massive multiple-input multiple-output (MIMO) aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs). Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput. However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput. In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise for the massive MIMO aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming for maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by RRU and 128 RAs deployed by BBU, the sum-rate of 10 UDs achieved with the optimal power sharing factors improves 33\% compared with the one attained without optimizing power sharing factors

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial

    One-Shot Messaging at Any Load Through Random Sub-Channeling in OFDM

    Full text link
    Compressive Sensing has well boosted massive random access protocols over the last decade. In this paper we apply an orthogonal FFT basis as it is used in OFDM, but subdivide its image into so-called sub-channels and let each sub-channel take only a fraction of the load. In a random fashion the subdivision is consecutively applied over a suitable number of time-slots. Within the time-slots the users will not change their sub-channel assignment and send in parallel the data. Activity detection is carried out jointly across time-slots in each of the sub-channels. For such system design we derive three rather fundamental results: i) First, we prove that the subdivision can be driven to the extent that the activity in each sub-channel is sparse by design. An effect that we call sparsity capture effect. ii) Second, we prove that effectively the system can sustain any overload situation relative to the FFT dimension, i.e. detection failure of active and non-active users can be kept below any desired threshold regardless of the number of users. The only price to pay is delay, i.e. the number of time-slots over which cross-detection is performed. We achieve this by jointly exploring the effect of measure concentration in time and frequency and careful system parameter scaling. iii) Third, we prove that parallel to activity detection active users can carry one symbol per pilot resource and time-slot so it supports so-called one-shot messaging. The key to proving these results are new concentration results for sequences of randomly sub-sampled FFTs detecting the sparse vectors "en bloc". Eventually, we show by simulations that the system is scalable resulting in a coarsely 30-fold capacity increase compared to standard OFDM
    corecore