24 research outputs found

    Collaborative Summarization of Topic-Related Videos

    Full text link
    Large collections of videos are grouped into clusters by a topic keyword, such as Eiffel Tower or Surfing, with many important visual concepts repeating across them. Such a topically close set of videos have mutual influence on each other, which could be used to summarize one of them by exploiting information from others in the set. We build on this intuition to develop a novel approach to extract a summary that simultaneously captures both important particularities arising in the given video, as well as, generalities identified from the set of videos. The topic-related videos provide visual context to identify the important parts of the video being summarized. We achieve this by developing a collaborative sparse optimization method which can be efficiently solved by a half-quadratic minimization algorithm. Our work builds upon the idea of collaborative techniques from information retrieval and natural language processing, which typically use the attributes of other similar objects to predict the attribute of a given object. Experiments on two challenging and diverse datasets well demonstrate the efficacy of our approach over state-of-the-art methods.Comment: CVPR 201

    Novel Deep Learning Techniques For Computer Vision and Structure Health Monitoring

    Get PDF
    This thesis proposes novel techniques in building a generic framework for both the regression and classification tasks in vastly different applications domains such as computer vision and civil engineering. Many frameworks have been proposed and combined into a complex deep network design to provide a complete solution to a wide variety of problems. The experiment results demonstrate significant improvements of all the proposed techniques towards accuracy and efficiency

    Information Theoretic State Estimation in Power Systems

    Get PDF

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Advances in nonnegative matrix factorization with application on data clustering.

    Get PDF
    Clustering is an important direction in many ļ¬elds, e.g., machine learning, data mining and computer vision. It aims to divide data into groups (clusters) for the purposes of summarization or improved understanding. With the rapid development of new technology, high-dimensional data become very common in many real world applications, such as satellite returned large number of images, robot received real-time video streaming, large-scale text database and the mass of information on the social networks (i.e., Facebook, twitter), etc, however, most existing clustering approaches are heavily restricted by the large number of features, and tend to be ineļ¬ƒcient and even infeasible. In this thesis, we focus on ļ¬nding an optimal low dimensional representation of high-dimensional data, based nonnegative matrix factorization (NMF) framework, for better clustering. Speciļ¬cally, there are three methods as follows: - Multiple Components Based Representation Learning Real data are usually complex and contain various components. For example, face images have expressions and genders. Each component mainly reļ¬‚ects one aspect of data and provides information others do not have. Therefore, exploring the semantic information of multiple components as well as the diversity among them is of great beneļ¬t to understand data comprehensively and in-depth. To this end, we propose a novel multi-component nonnegative matrix factorization. Instead of seeking for only one representation of data, our approach learns multiple representations simultaneously, with the help of the Hilbert Schmidt Independence Criterion (HSIC) as a diversity term. HSIC explores the diverse information among the representations, where each representation corresponds to a component. By integrating the multiple representations, a more comprehensive representation is then established. Extensive experimental results on real-world datasets have shown that MCNMF not only achieves more accurate performance over the state-of-the-arts using the aggregated representation, but also interprets data from diļ¬€erent aspects with the multiple representations, which is beyond what current NMFs can oļ¬€er. - Ordered Structure Preserving Representation Learning Real-world applications often process data, such as motion sequences and video clips, are with ordered structure, i.e., consecutive neighbouring data samples are very likely share similar features unless a sudden change occurs. Therefore, traditional NMF assumes the data samples and features to be independently distributed, making it not proper for the analysis of such data. To overcome this limitation, a novel NMF approach is proposed to take full advantage of the ordered nature embedded in the sequential data to improve the accuracy of data representation. With a L2,1-norm based neighbour penalty term, ORNMF enforces the similarity of neighbouring data. ORNMF also adopts the L2,1-norm based loss function to improve its robustness against noises and outliers. Moreover, ORNMF can ļ¬nd the cluster boundaries and get the number of clusters without the number of clusters to be given beforehand. A new iterative up- dating optimization algorithm is derived to solve ORNMFā€™s objective function. The proofs of the convergence and correctness of the scheme are also presented. Experiments on both synthetic and real-world datasets have demonstrated the eļ¬€ectiveness of ORNMF. - Diversity Enhanced Multi-view Representation Learning Multi-view learning aims to explore the correlations of diļ¬€erent information, such as diļ¬€erent features or modalities to boost the performance of data analysis. Multi-view data are very common in many real world applications because data is often collected from diverse domains or obtained from diļ¬€erent feature extractors. For example, color and texture information can be utilized as diļ¬€erent kinds of features in images and videos. Web pages are also able to be represented using the multi-view features based on text and hyperlinks. Taken alone, these views will often be deļ¬cient or incomplete because diļ¬€erent views describe distinct perspectives of data. Therefore, we propose a Diverse Multi-view NMF approach to explore diverse information among multi-view representations for more comprehensive learning. With a novel diversity regularization term, DiNMF explicitly enforces the orthogonality of diļ¬€erent data representations. Importantly, DiNMF converges linearly and scales well with large-scale data. By taking into account the manifold structures, we further extend the approach under a graph-based model to preserve the locally geometrical structure of the manifolds for multi-view setting. Compared to other multi-view NMF methods, the enhanced diversity of both approaches reduce the redundancy between the multi-view representations, and improve the accuracy of the clustering results. - Constrained Multi-View Representation Learning To incorporate prior information for learning accurately, we propose a novel semi- supervised multi-view NMF approach, which considers both the label constraints as well as the multi-view consistence simultaneously. In particular, the approach guarantees that data sharing the same label will have the same new representation and be mapped into the same class in the low-dimensional space regardless whether they come from the same view. Moreover, diļ¬€erent from current NMF- based multi-view clustering methods that require the weight factor of each view to be speciļ¬ed individually, we introduce a single parameter to control the distribution of weighting factors for NMF-based multi-view clustering. Consequently, the weight factor of each view can be assigned automatically depending on the dissimilarity between each new representation matrix and the consensus matrix. Besides, Using the structured sparsity-inducing, L2,1-norm, our method is robust against noises and hence can achieve more stable clustering results

    Robust subspace learning for static and dynamic affect and behaviour modelling

    Get PDF
    Machine analysis of human affect and behavior in naturalistic contexts has witnessed a growing attention in the last decade from various disciplines ranging from social and cognitive sciences to machine learning and computer vision. Endowing machines with the ability to seamlessly detect, analyze, model, predict as well as simulate and synthesize manifestations of internal emotional and behavioral states in real-world data is deemed essential for the deployment of next-generation, emotionally- and socially-competent human-centered interfaces. In this thesis, we are primarily motivated by the problem of modeling, recognizing and predicting spontaneous expressions of non-verbal human affect and behavior manifested through either low-level facial attributes in static images or high-level semantic events in image sequences. Both visual data and annotations of naturalistic affect and behavior naturally contain noisy measurements of unbounded magnitude at random locations, commonly referred to as ā€˜outliersā€™. We present here machine learning methods that are robust to such gross, sparse noise. First, we deal with static analysis of face images, viewing the latter as a superposition of mutually-incoherent, low-complexity components corresponding to facial attributes, such as facial identity, expressions and activation of atomic facial muscle actions. We develop a robust, discriminant dictionary learning framework to extract these components from grossly corrupted training data and combine it with sparse representation to recognize the associated attributes. We demonstrate that our framework can jointly address interrelated classification tasks such as face and facial expression recognition. Inspired by the well-documented importance of the temporal aspect in perceiving affect and behavior, we direct the bulk of our research efforts into continuous-time modeling of dimensional affect and social behavior. Having identified a gap in the literature which is the lack of data containing annotations of social attitudes in continuous time and scale, we first curate a new audio-visual database of multi-party conversations from political debates annotated frame-by-frame in terms of real-valued conflict intensity and use it to conduct the first study on continuous-time conflict intensity estimation. Our experimental findings corroborate previous evidence indicating the inability of existing classifiers in capturing the hidden temporal structures of affective and behavioral displays. We present here a novel dynamic behavior analysis framework which models temporal dynamics in an explicit way, based on the natural assumption that continuous- time annotations of smoothly-varying affect or behavior can be viewed as outputs of a low-complexity linear dynamical system when behavioral cues (features) act as system inputs. A novel robust structured rank minimization framework is proposed to estimate the system parameters in the presence of gross corruptions and partially missing data. Experiments on prediction of dimensional conflict and affect as well as multi-object tracking from detection validate the effectiveness of our predictive framework and demonstrate that for the first time that complex human behavior and affect can be learned and predicted based on small training sets of person(s)-specific observations.Open Acces
    corecore