981 research outputs found

    Joint Image Reconstruction and Segmentation Using the Potts Model

    Full text link
    We propose a new algorithmic approach to the non-smooth and non-convex Potts problem (also called piecewise-constant Mumford-Shah problem) for inverse imaging problems. We derive a suitable splitting into specific subproblems that can all be solved efficiently. Our method does not require a priori knowledge on the gray levels nor on the number of segments of the reconstruction. Further, it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the suitability of our method for joint image reconstruction and segmentation. We focus on Radon data, where we in particular consider limited data situations. For instance, our method is able to recover all segments of the Shepp-Logan phantom from 77 angular views only. We illustrate the practical applicability on a real PET dataset. As further applications, we consider spherical Radon data as well as blurred data

    The Residual Method for Regularizing Ill-Posed Problems

    Get PDF
    Although the \emph{residual method}, or \emph{constrained regularization}, is frequently used in applications, a detailed study of its properties is still missing. This sharply contrasts the progress of the theory of Tikhonov regularization, where a series of new results for regularization in Banach spaces has been published in the recent years. The present paper intends to bridge the gap between the existing theories as far as possible. We develop a stability and convergence theory for the residual method in general topological spaces. In addition, we prove convergence rates in terms of (generalized) Bregman distances, which can also be applied to non-convex regularization functionals. We provide three examples that show the applicability of our theory. The first example is the regularized solution of linear operator equations on LpL^p-spaces, where we show that the results of Tikhonov regularization generalize unchanged to the residual method. As a second example, we consider the problem of density estimation from a finite number of sampling points, using the Wasserstein distance as a fidelity term and an entropy measure as regularization term. It is shown that the densities obtained in this way depend continuously on the location of the sampled points and that the underlying density can be recovered as the number of sampling points tends to infinity. Finally, we apply our theory to compressed sensing. Here, we show the well-posedness of the method and derive convergence rates both for convex and non-convex regularization under rather weak conditions.Comment: 29 pages, one figur
    corecore