31 research outputs found

    Sparsity Preserving Algorithms for Octagons

    Get PDF
    Known algorithms for manipulating octagons do not preserve their sparsity, leading typically to quadratic or cubic time and space complexities even if no relation among variables is known when they are all bounded. In this paper, we present new algorithms, which use and return octagons represented as weakly closed difference bound matrices, preserve the sparsity of their input and have better performance in the case their inputs are sparse. We prove that these algorithms are as precise as the known ones

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vesselsโ€™ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Efficient Generation of Correctness Certificates for the Abstract Domain of Polyhedra

    Full text link
    Polyhedra form an established abstract domain for inferring runtime properties of programs using abstract interpretation. Computations on them need to be certified for the whole static analysis results to be trusted. In this work, we look at how far we can get down the road of a posteriori verification to lower the overhead of certification of the abstract domain of polyhedra. We demonstrate methods for making the cost of inclusion certificate generation negligible. From a performance point of view, our single-representation, constraints-based implementation compares with state-of-the-art implementations

    Verasco: un analyseur statique pour C formellement vรฉrifiรฉ

    Get PDF
    In order to develop safer software for critical applications, some static analyzers aim at establishing, with mathematical certitude, the absence of some classes of bug in the input program. A possible limit to this approach is the possibility of a soundness bug in the static analyzer itself, which would nullify the guarantees it is supposed to deliver.In this thesis, we propose to establish formal guarantees on the static analyzer itself: we present the design, implementation and proof of soundness using Coq of Verasco, a formally verified static analyzer based on abstract interpretation handling most of the ISO C99 language, including IEEE754 floating-point arithmetic (except recursion and dynamic memory allocation). Verasco aims at establishing the absence of erroneous behavior of the given programs. It enjoys a modular extendable architecture with several abstract domains and well-specified interfaces. We present the abstract iterator of Verasco, its handling of bounded machine arithmetic, its interval abstract domain, its symbolic abstract domain and its abstract domain of octagons. Verasco led to the development of new techniques for implementing data structure with sharing in Coq.Afin de dรฉvelopper des logiciels plus sรปrs pour des applications critiques, certains analyseurs statiques tentent d'รฉtablir, avec une certitude mathรฉmatique, l'absence de certains types de bugs dans un programme donnรฉ. Une limite possible ร  cette approche est l'รฉventualitรฉ d'un bug affectant la correction de l'analyseur lui-mรชme, รฉliminant ainsi les garanties qu'il est censรฉ apporter.Dans cette thรจse, nous proposons d'รฉtablir des garanties formelles sur l'analyseur lui-mรชme : nous prรฉsentons la conception, l'implantation et la preuve de sรปretรฉ en Coq de Verasco, un analyseur statique formellement vรฉrifiรฉ utilisant l'interprรฉtation abstraite pour le langage ISO C99 avec l'arithmรฉtique flottante IEEE754 (ร  l'exception de la rรฉcursion et de l'allocation dynamique de mรฉmoire). Verasco a pour but d'รฉtablir l'absence d'erreur ร  l'exรฉcution des programmes donnรฉs. Il est conรงu selon une architecture modulaire et extensible contenant plusieurs domaines abstraits et des interfaces bien spรฉcifiรฉes. Nous dรฉtaillons le fonctionnement de l'itรฉrateur abstrait de Verasco, son traitement des entiers bornรฉs de la machine, son domaine abstrait d'intervalles, son domaine abstrait symbolique et son domaine abstrait d'octogones. Verasco a donnรฉ lieu au dรฉveloppement de nouvelles techniques pour implรฉmenter des structures de donnรฉes avec partage dans Coq

    Adaptive Resonance Theory (ART) for social media analytics

    Get PDF
    This chapter presents the ART-based clustering algorithms for social media analytics in detail. Sections 3.1 and 3.2 introduce Fuzzy ART and its clustering mechanisms, respectively, which provides a deep understanding of the base model that is used and extended for handling the social media clustering challenges. Important concepts such as vigilance region (VR) and its properties are explained and proven. Subsequently, Sects. 3.3-3.7 illustrate five types of ART adaptive resonance theory variants, each of which addresses the challenges in one social media analytical scenario, including automated parameter adaptation, user preference incorporation, short text clustering, heterogeneous data co-clustering and online streaming data indexing. The content of this chapter is several prior studies, including Probabilistic ART [15

    Robustness Verification of k-Nearest Neighbor Classifiers by Abstract Interpretation

    Get PDF
    openAbstract interpretation is an established mathematical framework introduced by Cousot and Cousot in 1977 and ubiquitously used in static program analysis. In recent years, many noteworthy works have shown how abstract interpretation can be successfully applied to formally verify robustness properties of some major machine learning techniques like (deep) neural networks, decision trees and support vector machines. This research work aims to pursue this line of research by proposing a novel abstract interpretation-based framework for designing a sound abstract version of the k-Nearest Neighbors (kNN) algorithm, a well-known non-parametric supervised learning method widely used for classification and regression tasks, which is then instantiated to the standard interval domain approximating the range of numerical features, to verify its robustness and stability properties. This verification approach has been fully implemented and evaluated on several datasets, including standard benchmark datasets for individual fairness verification, and then compared with some related works finding adversarial examples on kNNs. The experimental results turned out to be very promising and showed high percentages of provable robustness and stability in most of the reference datasets, thus making a step forward in the current state-of-the-art of formal verification of machine learning models.Abstract interpretation is an established mathematical framework introduced by Cousot and Cousot in 1977 and ubiquitously used in static program analysis. In recent years, many noteworthy works have shown how abstract interpretation can be successfully applied to formally verify robustness properties of some major machine learning techniques like (deep) neural networks, decision trees and support vector machines. This research work aims to pursue this line of research by proposing a novel abstract interpretation-based framework for designing a sound abstract version of the k-Nearest Neighbors (kNN) algorithm, a well-known non-parametric supervised learning method widely used for classification and regression tasks, which is then instantiated to the standard interval domain approximating the range of numerical features, to verify its robustness and stability properties. This verification approach has been fully implemented and evaluated on several datasets, including standard benchmark datasets for individual fairness verification, and then compared with some related works finding adversarial examples on kNNs. The experimental results turned out to be very promising and showed high percentages of provable robustness and stability in most of the reference datasets, thus making a step forward in the current state-of-the-art of formal verification of machine learning models

    based on resting state fMRI

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ๋ถ„์ž์˜ํ•™ ๋ฐ ๋ฐ”์ด์˜ค์ œ์•ฝํ•™๊ณผ, 2021.8. ์œ„์›์„.๋Œ€๋ถ€๋ถ„์˜ ์‹ค์„ธ๊ณ„ ๋„คํŠธ์›Œํฌ์—์„œ ๋„คํŠธ์›Œํฌ์˜ ๊ตฌ์„ฑ์— ์žˆ์–ด์„œ ๊ธฐํ•˜ํ•™์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ์ตœ๊ทผ ์—ฐ๊ตฌ์—์„œ ๊ตฌ์กฐ์  ๋‡Œ ๋„คํŠธ์›Œํฌ๋Š” ์Œ๊ณก๊ธฐํ•˜์  ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์ด ๋ฐํ˜€์กŒ๋‹ค. ๋‡Œ์˜ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ์€ ๋ฐ€์ ‘ํ•œ ์—ฐ๊ด€์„ ์ง€๋‹ˆ๊ณ  ์žˆ์œผ๋ฏ€๋กœ, ๊ธฐ๋Šฅ์  ๋‡Œ ๋„คํŠธ์›Œํฌ ์—ญ์‹œ ์Œ๊ณก๊ธฐํ•˜์  ํŠน์„ฑ์„ ์ง€๋‹ˆ๊ณ  ์žˆ์Œ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ, ์šฐ๋ฆฌ๋Š” ํœด์‹๊ธฐ ๋‡Œ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ(rs-fMRI)์„ ํ†ตํ•ด ์ถ”์ถœํ•œ ๊ธฐ๋Šฅ์  ๋‡Œ ์ปค๋„ฅํ†ฐ(connectome)์„ ๋ถ„์„ํ•˜์—ฌ ์ด ๊ฐ€์„ค์„ ์ฆ๋ช…ํ•˜๊ณ ์ž ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ์Œ๊ณก๊ณต๊ฐ„์— ์ž„๋ฒ ๋“œ(embed)ํ•จ์œผ๋กœ์จ ๊ธฐ๋Šฅ์  ๋‡Œ ๋„คํŠธ์›Œํฌ์˜ ํŠน์„ฑ์„ ์ƒˆ๋กœ์ด ์กฐ์‚ฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋„คํŠธ์›Œํฌ์˜ ๊ผญ์ง€์ ์€ 274๊ฐœ์˜ ๋ฏธ๋ฆฌ ์ •์˜๋œ ๊ด€์‹ฌ์˜์—ญ(ROI) ํ˜น์€ 6mm ํฌ๊ธฐ์˜ ๋ณต์…€(voxel)์˜ ๋‘ ๊ฐ€์ง€ ์Šค์ผ€์ผ๋กœ ์ •์˜๋˜์—ˆ์œผ๋ฉฐ, ๊ผญ์ง€์  ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ์„ฑ์€ ์ž๊ธฐ๊ณต๋ช… ์˜์ƒ์—์„œ ๊ฐ ์˜์—ญ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ BOLD ์‹ ํ˜ธ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ธก์ •ํ•˜๊ณ  ์ผ์ • ๋ฌธํ„ฑ๊ฐ’(threshold)์„ ์ ์šฉํ•จ์œผ๋กœ์„œ ๊ฒฐ์ •๋˜์—ˆ๋‹ค. ๋จผ์ € ์Œ๊ณก๊ธฐํ•˜ ๋„คํŠธ์›Œํฌ์˜ ํŠน์ง•์ธ ์Šค์ผ€์ผ-ํ”„๋ฆฌ(scale-free)๋ฅผ ๋งŒ์กฑํ•จ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด, ๋„คํŠธ์›Œํฌ์˜ ์ฐจ์ˆ˜(degree) ๋ถ„ํฌ์˜ ๊ธ‰์ˆ˜์„ฑ(power-law)์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฐจ์ˆ˜์˜ ํ™•๋ฅ ๋ถ„ํฌ๊ณก์„ ์€ ๋กœ๊ทธ-๋กœ๊ทธ ์Šค์ผ€์ผ์˜ ๊ทธ๋ž˜ํ”„์—์„œ ์šฐํ•˜ํ–ฅํ•˜๋Š” ์ง์„  ๋ชจ์–‘์˜ ๋ถ„ํฌ๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด๋Š” ์ฆ‰ ์ฐจ์ˆ˜ ๋ถ„ํฌ๊ฐ€ ์ฐจ์ˆ˜์˜ ์Œ์˜ ๊ธ‰์ˆ˜ํ•จ์ˆ˜์— ์˜ํ•ด ๋‚˜ํƒ€๋‚ด์–ด์ง์„ ์˜๋ฏธํ•œ๋‹ค. ์ด์–ด์„œ ๊ธฐ๋Šฅ์  ๋‡Œ ๋„คํŠธ์›Œํฌ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๊ธฐ์ € ๊ธฐํ•˜๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ทธ๋ž˜ํ”„๋ฅผ ์œ ํด๋ฆฌ๋“œ, ์Œ๊ณก, ๊ตฌ๋ฉด์  ํ‹์„ฑ์„ ๊ฐ€์ง„ ๋‹ค์–‘์ฒด๋“ค์— ์ž„๋ฒ ๋“œํ•˜์—ฌ ์ž„๋ฒ ๋”ฉ์˜ ์ถฉ์‹ค์„ฑ ์ฒ™๋„(fidelity measure)๋“ค์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์ž„๋ฒ ๋“œ ๋Œ€์ƒ์ด ๋œ ์  ๋‹ค์–‘์ฒด๋“ค ์ค‘, 10์ฐจ์› ๋ฐ 2์ฐจ์› ์Œ๊ณก๊ณต๊ฐ„์˜ ํ‰๊ท  ๋’คํ‹€๋ฆผ(distortion)์ด ๋™์ผ ์ฐจ์›์˜ ์œ ํด๋ฆฌ๋“œ ๋‹ค์–‘์ฒด์™€ ๋น„๊ตํ•˜์—ฌ ๋” ๋‚ฎ์•˜๋‹ค. ์ด์–ด, ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์ฒดํ™” ๋ฐ ์‹œ๊ฐํ™”ํ•˜๊ณ  ๊ทธ ํŠน์ง•์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋„คํŠธ์›Œํฌ๋ฅผ ์ด์ฐจ์›์˜ ์Œ๊ณก ์›ํŒ์— 1/โ„2 ๊ธฐํ•˜ํ•™์  ๋ชจ๋ธ์— ๋”ฐ๋ผ ์ž„๋ฒ ๋“œํ•˜์˜€๋‹ค. ์ด ์ด์ฐจ์›์˜ ๊ทน์ขŒํ‘œ ํ˜•ํƒœ์˜ ๋ชจ๋ธ์—์„œ ๋ฐ˜๊ฒฝ ๋ฐ ๊ฐ ์ฐจ์›์˜ ์ขŒํ‘œ๋Š” ๊ฐ๊ฐ ๊ผญ์ง€์ ์˜ ์—ฐ๊ฒฐ ์ธ๊ธฐ๋„ ๋ฐ ์œ ์‚ฌ๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ROI ์ˆ˜์ค€์˜ ๋ถ„์„์—์„œ๋Š” ํŠน๋ณ„ํžˆ ๋†’์€ ์ธ๊ธฐ๋„๋ฅผ ๊ฐ–๋Š” ์˜์—ญ์€ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•„ ์ž„๋ฒ ๋“œ๋œ ์›ํŒ์˜ ์ค‘์‹ฌ๋ถ€์— ๋นˆ ๊ณต๊ฐ„์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•œํŽธ ๊ฐ™์€ ํ•ด๋ถ€ํ•™์  ์—ฝ(lobe)์— ์†ํ•œ ์˜์—ญ๋“ค์€ ๋น„์Šทํ•œ ๊ฐ๋„ ์˜์—ญ ๋‚ด์— ๋ฐ€์ง‘๋˜์—ˆ์œผ๋ฉฐ, ๋ฐ˜๋Œ€์ธก ๋™์ผ ์—ฝ์— ์†ํ•œ ์˜์—ญ๋“ค ์—ญ์‹œ ๊ทธ ๊ฐ์ขŒํ‘œ์˜ ๋ถ„ํฌ๊ฐ€ ๊ตฌ๋ถ„๋˜์ง€ ์•Š์•˜๋‹ค. ์ด๋Š” ๊ธฐ๋Šฅ์  ๋‡Œ ๋„คํŠธ์›Œํฌ์˜ ํ•ด๋ถ€ํ•™์  ์—ฐ๊ด€์„ฑ๊ณผ ๋ฐ˜๋Œ€์ธก ๋™์ผ ์—ฝ ๊ฐ„์˜ ๊ธฐ๋Šฅ์  ์—ฐ๊ด€์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋ณต์…€ ์ˆ˜์ค€์˜ ๋ถ„์„์—์„œ๋Š” ์†Œ๋‡Œ์— ์†ํ•œ ๋ณต์…€๋“ค ์ค‘ ๋‹ค์ˆ˜๊ฐ€ ๋„“์€ ๊ฐ์ขŒํ‘œ ์˜์—ญ์— ํฉ๋ฟŒ๋ ค์ง„ ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด๋Š” ๊ฐœ๊ฐœ ๋ณต์…€์˜ ๊ธฐ๋Šฅ์  ์ด์งˆ์„ฑ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ, ์ „ ์˜์—ญ์— ๊ฑธ์ณ ๋งค์šฐ ์œ ์‚ฌํ•œ ๊ฐ์ขŒํ‘œ๋ฅผ ๊ฐ€์ง„ ๋ฐฉ์‚ฌํ˜•์˜ ๋ง‰๋Œ€ ๋ชจ์–‘์˜ ์ ์˜ ์ง‘ํ•ฉ์ด ๊ด€์ฐฐ๋˜์—ˆ์œผ๋ฉฐ, ๋†’์€ ๊ธฐ๋Šฅ์  ์œ ์‚ฌ์„ฑ์„ ๊ฐ€์ง„ ๋ณต์…€๋“ค๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋ณต์…€ ์ˆ˜์ค€์˜ ๋„คํŠธ์›Œํฌ์—์„œ ๋‡Œ์˜ ๋…๋ฆฝ์„ฑ๋ถ„ ๋ถ„์„(ICA) ์˜ ๊ฒฐ๊ณผ๋กœ ๋‚˜์˜จ ์„ฑ๋ถ„ ๋„คํŠธ์›Œํฌ๋“ค์„ ํ”Œ๋กœํŒ…ํ•œ ๊ฒฐ๊ณผ, ๊ฐ ๋„คํŠธ์›Œํฌ ์„ฑ๋ถ„์ด ๋†’์€ ๋ฐ€์ง‘๋„๋ฅผ ๋ณด์—ฌ ๋‘ ๋ฐฉ๋ฒ•๋ก  ๊ฐ„ ๊ฒฐ๊ณผ์˜ ์œ ์‚ฌ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์žํ์ŠคํŽ™ํŠธ๋Ÿผ์žฅ์• ์˜ ABIDE II ์˜คํ”ˆ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜์—ฌ 1/โ„2 ๋ชจ๋ธ์— ๊ทผ๊ฑฐํ•˜์—ฌ, ๋Œ€์กฐ๊ตฐ ํ™˜์ž ๊ทธ๋ฃน๊ณผ ์งˆ๋ณ‘๊ตฐ ํ™˜์ž ๊ฐœ์ธ์˜ ๋„คํŠธ์›Œํฌ๋ฅผ ๋น„๊ตํ•˜๋Š” ๋ถ„์„์„ ์‹œํ–‰ํ•œ ๊ฒฐ๊ณผ, ์งˆ๋ณ‘๊ตฐ์—์„œ ๋‹ค์–‘ํ•œ ํŒจํ„ด์„ ๋ณด์˜€์œผ๋‚˜, ๊ทธ ์ค‘ ์žํ์ฆ ์ง„๋‹จ์„ ๋ฐ›์€ ํ™˜์ž์—์„œ ํ”ผ์งˆ-์„ ์กฐ์ฒด ๊ฒฝ๋กœ์˜ ์ด์ƒ์ด, ์•„์Šคํผ๊ฑฐ์ฆํ›„๊ตฐ ์ง„๋‹จ์„ ๋ฐ›์€ ํ™˜์ž์—์„œ ํ›„์œ„๊ด€์ž๊ณ ๋ž‘ (posterior superior temporal sulcus) ์„ ํฌํ•จํ•˜๋Š” ๊ฒฝ๋กœ์˜ ์ด์ƒ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ถ„์„์˜ ์žฌํ˜„์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ™์€ ๋„คํŠธ์›Œํฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ž„๋ฒ ๋”ฉ ๊ณผ์ •์„ ๋ฐ˜๋ณต ์‹œํ–‰ํ•˜์˜€์„ ๋•Œ, ๋„คํŠธ์›Œํฌ ๋ง๋‹จ์˜ ์ผ๋ถ€ ๊ผญ์ง€์ ์„ ์ œ์™ธํ•˜๋ฉด ๋†’์€ ์žฌํ˜„์„ฑ์„ ๋ณด์˜€๋‹ค. ์˜์ƒ์˜ ์‹œ๊ณ„์—ด(time series) ๋‚ด ์ผ๊ด€์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์˜์ƒ์„ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์— ๋”ฐ๋ผ ๋ถ„๋ฆฌํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€์„ ๋•Œ, 4๊ตฌ๊ฐ„์œผ๋กœ ๋‚˜๋ˆˆ ์‹œ๊ณ„์—ด ์˜์ƒ์—์„œ๋Š” ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ์œผ๋‚˜ 30์ดˆ ๊ธธ์ด์˜ 30๊ตฌ๊ฐ„์œผ๋กœ ๋‚˜๋‰˜์—ˆ์„ ๋•Œ๋Š” ์ผ๊ด€์ ์ธ ๊ฒฐ๊ณผ๊ฐ€ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‡Œ ๊ธฐ๋Šฅ์  ๋„คํŠธ์›Œํฌ์— ๋Œ€ํ•œ ๋ถ„์„ ์ค‘ ์ตœ์ดˆ๋กœ ๊ธฐํ•˜ํ•™์  ๊ด€์ ์—์„œ ์ง„ํ–‰๋œ ๊ฒƒ์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ๊ด€์  ๋ฐ ์งˆ๋ณ‘๊ตฐ ๋Œ€์ƒ์—์„œ ๋‡Œ ๋„คํŠธ์›Œํฌ์˜ ์ด์ƒ์„ ์ฐพ๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์˜์˜๊ฐ€ ์žˆ๋‹ค.For most of the real-world networks, geometry plays an important role in organizing the network, and recent works have revealed that the geometry in the structural brain network is most likely to be hyperbolic. Therefore, it can be assumed that the geometry of the functional brain network would also be hyperbolic. In this study, we analyzed the functional connectomes from functional magnetic resonance imaging (fMRI) to prove this hypothesis and investigate the characteristics of the network by embedding it into the hyperbolic space, by utilizing human connectome project (HCP) dataset for healthy young adults and Autism Brain Imaging Data Exchange II (ABIDE II) dataset for diseased autism subject and control group. Nodes of the network were defined at two different scales: by 274 predefined ROIs and 6mm-sized voxels. The adjacency between the nodes was determined by computing the correlation of the time-series of the BOLD signal of brain regions and binarized by adopting threshold value. First, we aimed to find out whether the network was scale-free by investigating the degree distribution of the functional brain network. The probability distribution function (PDF) versus degree was plotted as a straight line at a log-log scale graph versus the degree of nodes. This indicates that degree distribution is roughly proportional to a power function of degree, or scale-free. To clarify the most fitting underlying geometry of the network, we then embedded the graph into manifolds of Euclidean, hyperbolic, or spherical spaces and compared the fidelity measures of embeddings. The embedding to the hyperbolic spaces yielded a better fidelity measure compared to other manifolds. To get a discrete and visible map and investigate the characteristics of the network, we embedded the network in a two-dimensional hyperbolic disc by the 1/โ„2 model. The radial and angular dimensions in the embedding is interpreted as popularity and similarity dimensions, respectively. The ROI-wise analysis revealed that no nodes with particularly high popularity were found, which was revealed by a vacant area in the center of the disk. Nodes in the same lobe were more likely to be clustered in narrow similarity dimensions, and the nodes from the homotopic lobes were also functionally clustered. The results indicate the anatomic relevance of the functional brain network and the strong functional coherence of the homotopic area of the cerebral cortex. The voxel-wise analysis revealed additional features. A large number of voxels from the cerebellum were scattered in the whole angular position, which might reflect the functional heterogeneity of the cerebellum in the sub-ROI level. Additionally, multiple rod-shaped substructures of radial direction were found, which indicates sets of voxels with functional similarity. When compared with independent component analysis (ICA)-driven results, each large-scale component of the brain acquired by ICA showed a consistent pattern of embedding between the subjects. To find the abnormality of the network in the diseased patient, we utilized the autistic spectrum disorder (ASD) dataset. The two groups of ASD and the control group were found to be comparable in means of the quality of embedding. We calculated the hyperbolic distance between all edges of the network and searched for the alteration of the distance of the individual brain network. Among the variable results among the networks of ASD group subjects, the alteration of the cortico-striatal pathway in an autism patient and posterior superior temporal sulcus (pSTS) in an Aspergerโ€™s syndrome patient were present, respectively. The two different anatomically-scaled layers of the network showed a certain degree of correspondence in terms of degree-degree correlation and spreading pattern of network. But anatomically parcellated ROI did not guarantee the functional similarity between the voxels composing it. Finally, to investigate the reproducibility of the embedding process, we repeatedly performed the embedding process and computed the variance of distance matrices. The result was stable except for end-positioned non-popular nodes. Furthermore, to investigate consistency along time-series of fMRI, we compared network yielded by segments of the time series. The segmented networks showed similar results when divided into four frames, but the result lost consistency when divided into 30 frames of 30 seconds each. This study is the first to investigate the characteristics of the functional brain network on the basis of hyperbolic geometry. We suggest a new method applicable for assessing the network alteration in subjects with a neuropsychiatric disease, and these approaches grant us a new understanding in analyzing the functional brain network with a geometric perspective.1. Introduction 1 1.1. Human brain networks 1 1.1.1. Geometry of human brain networks 2 1.2. Scale-free network 3 1.2.1. Definition of a scale-free network 4 1.3. Embedding of the network in hyperbolic space 5 1.3.1. Hyperbolic spaces and Poincarรฉ disk 5 1.3.2. Geometric model of 1/โ„2 9 1.4. The aim of the present study 10 2. Methods 12 2.1. Subjects and image acquisition 12 2.1.1. Human connectome project (HCP) dataset 12 2.1.2. Autism Brain Imaging Data Exchange II (ABIDE II) dataset 12 2.2. Preprocessing for resting-state fMRI 15 2.3. Resting-state networks and functional connectivity analysis 16 2.3.1. Analyzing degree distribution 18 2.4. Assessing underlying geometry 18 2.4.1. The three component spaces 18 2.4.2. Embedding into spaces 20 2.5. Embedding of the network in the 1/โ„2 model 22 2.6. Comparison with ICA-driven method 23 2.7. Assessing the quality of embedding 23 2.8. Abnormality detection in the diseased subject 24 2.9. Assessing variability of analysis 27 3. Results 29 3.1. Global characteristics of the network 29 3.1.1. The degree distribution 31 3.1.2. Determining the threshold value of network 34 3.2. Graph embedding into spaces 36 3.3. 1/โ„2 model analysis 39 3.4. Quality of the embedding 58 3.5. Alteration of the network in the diseased subject 61 3.6. Variability of results 63 3.6.1. Reproducibility of Mercator 63 3.6.2. Time variance of results 67 4. Discussion 70 4.1. Composition of the network 70 4.2. Scale-freeness of brain network 71 4.3. The underlying geometry of brain network 73 4.4. Hyperbolic plane representation 75 4.4.1. Voxelwise approach 78 4.4.2. Compatibility with ICA 80 4.5. Alteration of the network in ASD subjects 81 4.6. Variability and reproducibility of methods 83 4.7. Further applications 85 5. Conclusion 87 References 89 ๊ตญ๋ฌธ ์ดˆ๋ก 106๋ฐ•
    corecore