92 research outputs found

    Multi-commodity Flows and Cuts in Polymatroidal Networks

    Get PDF
    IMA, Google Corp., Microsoft Corp., Yandex Corp

    Heuristics for Sparsest Cut Approximations in Network Flow Applications

    Get PDF
    The Maximum Concurrent Flow Problem (MCFP) is a polynomially bounded problem that has been used over the years in a variety of applications. Sometimes it is used to attempt to find the Sparsest Cut, an NP-hard problem, and other times to find communities in Social Network Analysis (SNA) in its hierarchical formulation, the HMCFP. Though it is polynomially bounded, the MCFP quickly grows in space utilization, rendering it useful on only small problems. When it was defined, only a few hundred nodes could be solved, where a few decades later, graphs of one to two thousand nodes can still be too much for modern commodity hardware to handle. This dissertation covers three approaches to heuristics to the MCFP that run significantly faster in practice than the LP formulation with far less memory utilization. The first two approaches are based on the Maximum Adjacency Search (MAS) and apply to both the MCFP and the HMCFP used for community detection. We compare the three approaches to the LP performance in terms of accuracy, runtime, and memory utilization on several classes of synthetic graphs representing potential real-world applications. We find that the heuristics are often correct, and run using orders of magnitude less memory and time

    On Routing Disjoint Paths in Bounded Treewidth Graphs

    Get PDF
    We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph GG and a collection of kk source-destination pairs M={(s1,t1),…,(sk,tk)}\mathcal{M} = \{(s_1, t_1), \dots, (s_k, t_k)\}. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset M′\mathcal{M}' of the pairs is a collection P\mathcal{P} of paths such that, for each pair (si,ti)∈M′(s_i, t_i) \in \mathcal{M}', there is a path in P\mathcal{P} connecting sis_i to tit_i. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph GG has capacities cap(e)\mathrm{cap}(e) on the edges and a routing P\mathcal{P} is feasible if each edge ee is in at most cap(e)\mathrm{cap}(e) of the paths of P\mathcal{P}. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an O(r3)O(r^3) approximation for MaxEDP on graphs of treewidth at most rr and a matching approximation for MaxNDP on graphs of pathwidth at most rr. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r⋅3r)O(r \cdot 3^r) approximation for MaxEDP

    Maximum Edge-Disjoint Paths in kk-sums of Graphs

    Full text link
    We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The integrality gap is known to be Ω(n)\Omega(\sqrt{n}) even for planar graphs due to a simple topological obstruction and a major focus, following earlier work, has been understanding the gap if some constant congestion is allowed. In this context, it is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold. It is easy to deduce that for given constant bounds on the approximation and congestion, the class of "nice" graphs is nor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph of bounded treewidth and is able to integrally route a constant fraction of the LP solution's value. Note that we do not incur any edge congestion. Previously this was not known even for series parallel graphs which have treewidth 2. The algorithm is based on a more general argument that applies to kk-sums of graphs in some graph family, as long as the graph family has a constant factor, constant congestion bound. We then use this to show that such bounds hold for the class of kk-sums of bounded genus graphs

    Towards Duality of Multicommodity Multiroute Cuts and Flows: Multilevel Ball-Growing

    Get PDF
    An elementary h-route flow, for an integer h ≥ 1, is a set of h edge-disjoint paths between a source and a sink, each path carrying a unit of flow, and an h-route flow is a non-negative linear combination of elementary h-route flows. An h-route cut is a set of edges whose removal decreases the maximum h-route flow between a given source-sink pair (or between every source-sink pair in the multicommodity setting) to zero. The main result of this paper is an approximate duality theorem for multicommodity h-route cuts and flows, for h ≤ 3: The size of a minimum h-route cut is at least f/h and at most O(log 3 k·f) where f is the size of the maximum h-route flow and k is the number of commodities. The main step towards the proof of this duality is the design and analysis of a polynomial-time approximation algorithm for the minimum h-route cut problem for h = 3 that has an approximation ratio of O(log 3 k). Previously, polylogarithmic approximation was known only for h-route cuts for h ≤ 2. A key ingredient of our algorithm is a novel rounding technique that we call multilevel ball-growing. Though the proof of the duality relies on this algorithm, it is not a straightforward corollary of it as in the case of classical multicommodity flows and cuts. Similar results are shown also for the sparsest multiroute cut problem
    • …
    corecore