18 research outputs found

    Listening to Distances and Hearing Shapes:Inverse Problems in Room Acoustics and Beyond

    Get PDF
    A central theme of this thesis is using echoes to achieve useful, interesting, and sometimes surprising results. One should have no doubts about the echoes' constructive potential; it is, after all, demonstrated masterfully by Nature. Just think about the bat's intriguing ability to navigate in unknown spaces and hunt for insects by listening to echoes of its calls, or about similar (albeit less well-known) abilities of toothed whales, some birds, shrews, and ultimately people. We show that, perhaps contrary to conventional wisdom, multipath propagation resulting from echoes is our friend. When we think about it the right way, it reveals essential geometric information about the sources--channel--receivers system. The key idea is to think of echoes as being more than just delayed and attenuated peaks in 1D impulse responses; they are actually additional sources with their corresponding 3D locations. This transformation allows us to forget about the abstract \emph{room}, and to replace it by more familiar \emph{point sets}. We can then engage the powerful machinery of Euclidean distance geometry. A problem that always arises is that we do not know \emph{a priori} the matching between the peaks and the points in space, and solving the inverse problem is achieved by \emph{echo sorting}---a tool we developed for learning correct labelings of echoes. This has applications beyond acoustics, whenever one deals with waves and reflections, or more generally, time-of-flight measurements. Equipped with this perspective, we first address the ``Can one hear the shape of a room?'' question, and we answer it with a qualified ``yes''. Even a single impulse response uniquely describes a convex polyhedral room, whereas a more practical algorithm to reconstruct the room's geometry uses only first-order echoes and a few microphones. Next, we show how different problems of localization benefit from echoes. The first one is multiple indoor sound source localization. Assuming the room is known, we show that discretizing the Helmholtz equation yields a system of sparse reconstruction problems linked by the common sparsity pattern. By exploiting the full bandwidth of the sources, we show that it is possible to localize multiple unknown sound sources using only a single microphone. We then look at indoor localization with known pulses from the geometric echo perspective introduced previously. Echo sorting enables localization in non-convex rooms without a line-of-sight path, and localization with a single omni-directional sensor, which is impossible without echoes. A closely related problem is microphone position calibration; we show that echoes can help even without assuming that the room is known. Using echoes, we can localize arbitrary numbers of microphones at unknown locations in an unknown room using only one source at an unknown location---for example a finger snap---and get the room's geometry as a byproduct. Our study of source localization outgrew the initial form factor when we looked at source localization with spherical microphone arrays. Spherical signals appear well beyond spherical microphone arrays; for example, any signal defined on Earth's surface lives on a sphere. This resulted in the first slight departure from the main theme: We develop the theory and algorithms for sampling sparse signals on the sphere using finite rate-of-innovation principles and apply it to various signal processing problems on the sphere

    Sampling methods for parametric non-bandlimited signals:extensions and applications

    Get PDF
    Sampling theory has experienced a strong research revival over the past decade, which led to a generalization of Shannon's original theory and development of more advanced formulations with immediate relevance to signal processing and communications. For example, it was recently shown that it is possible to develop exact sampling schemes for a large class of non-bandlimited signals, namely, certain signals with finite rate of innovation. A common feature of such signals is that they have a parametric representation with a finite number of degrees of freedom and can be perfectly reconstructed from a finite number of samples. The goal of this thesis is to advance the sampling theory for signals of finite rate of innovation and consider its possible extensions and applications. In the first part of the thesis, we revisit the sampling problem for certain classes of such signals, including non-uniform splines and piecewise polynomials, and develop improved schemes that allow for stable and precise reconstruction in the presence of noise. Specifically, we develop a subspace approach to signal reconstruction, which converts a nonlinear estimation problem into the simpler problem of estimating the parameters of a linear model. This provides an elegant and robust framework for solving a large class of sampling problems, while offering more flexibility than the traditional scheme for bandlimited signals. In the second part of the thesis, we focus on applications of our results to certain classes of nonlinear estimation problems encountered in wideband communication systems, most notably ultra-wideband (UWB) systems, where the bandwidth used for transmission is much larger than the bandwidth or rate of information being sent. We develop several frequency domain methods for channel estimation and synchronization in UWB systems, which yield high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. We also propose algorithms that are suitable for identification of more realistic UWB channel models, where a received signal is made up of pulses with different pulse shapes. Finally, we extend our results to multidimensional signals, and develop exact sampling schemes for certain classes of parametric non-bandlimited 2-D signals, such as sets of 2-D Diracs, polygons or signals with polynomial boundaries
    corecore